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Abstract
The in-homogeneous self-similar measure μ is defined by the relation

μ =
N∑

j=1

p jμ ◦ S−1
j + pν,

where (p1, . . . , pN , p) is a probability vector, each S j : Rd → R
d , j = 1, . . . , N ,

is a contraction similarity, and ν is a Borel probability measure on R
d with compact

support. In this paper, we study the asymptotic behavior of the Fourier transforms of
in-homogeneous self-similar measures. We obtain non-trivial lower and upper bounds
for the qth lower Fourier dimensions of the in-homogeneous self-similar measures
without any separation conditions. Moreover, if the IFS satisfies some separation
conditions, the lower bounds for the qth lower Fourier dimensions can be improved.
These results confirm conjecture 2.5 and give a positive answer to the question 2.7 in
Olsen and Snigireva’s paper (Math Proc Camb Philos Soc 144(2):465–493, 2008).
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1 Introduction and Statement of Results

Let I = {S1, . . . , SN } be a family of contracting similarities onRd . It is a fundamental
result in fractal geometry that there exists a unique, non-empty compact set K∅ ⊂ R

d

such that

K∅ =
N⋃

j=1

S j (K∅), (1.1)

see Hutchinson [11]. We call I = {S j }Nj=1 an iterated function system (IFS) of simi-
larities and K∅ the self-similar set generated by I. In order to understand the fractal
structures of self-similar sets, one studies the so-called self-similar measures. More
precisely, given a probability vectorp = (p1, . . . , pN ), i.e. all p j > 0 and

∑
j p j = 1,

there exists a unique Borel probability measure μ0 supported on K∅ such that

μ0 =
N∑

j=1

p jμ0 ◦ S−1
j . (1.2)

We say that themeasureμ0 is the self-similarmeasure generated by (I,p). Self-similar
sets and measures play an important role in the study of fractal geometry and we refer
the reader to [6, 7, 11] and the references therein for the detailed properties of self-
similar sets and measures. Observe that the self-similar measure μ0 can be viewed as
the unique solution of the following homogeneous equation

μ −
N∑

j=1

p jμ ◦ S−1
j = 0.

This viewpoint suggests to us the following natural generalization of self-similar mea-
sures.

Definition 1.1 Let I = {S j }Nj=1 be an IFS of similarities, let p = (p1, . . . , pN , p) be

a probability vector, and let ν be a Borel probability measure on R
d with compact

support. A Borel probability measure μ satisfying the equation

μ −
N∑

j=1

p jμ ◦ S−1
j = pν (1.3)

is called the in-homogeneous self-similar measure generated by (I,p, ν).

The existence and uniqueness of such measures is well-known, see e.g. [17,
18]. Furthermore, it has been shown that the support of the in-homogeneous self-
similar measure μ is equal to the unique non-empty compact set KC , called the
in-homogeneous self-similar set, such that
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KC =
N⋃

j=1

S j (KC ) ∪ C, (1.4)

where C is the compact support of the measure ν.
In-homogeneous self-similar sets and measures were first introduced by Barns-

ley and Demko in [3], where they considered some examples of in-homogeneous
self-similar measures. In [1, 2], the in-homogeneous terms ν and C are called the
condensation measure and the condensation set respectively. One of the most impor-
tant topics in the field of in-homogeneous self-similar measures is to relate various
properties of in-homogeneous self-similar measures to the associated condensation
measures. See [8] for a discussion of box dimensions of in-homogeneous self-similar
measures, and see [17, 25] for Lq spectra and Rényi dimensions.

The Fourier transform of a Borel probability measure μ on R
d is defined by

μ̂(x) :=
∫

Rd
ei〈x,y〉 dμ(y), x ∈ R

d ,

where 〈x, y〉 denotes the Euclidean inner product of x and y. The study of the Fourier
transforms of measures has a long history. In recent years, the behavior of the Fourier
transforms of measures at infinity has received much attention. Li and Sahlsten [16]
gave the sufficient conditions for a self-similar measure μ to be a Rajchman measure,
that is, its Fourier transform |μ̂(x)| → 0 as |x | → 0. See [15] for a similar discussion of
self-affinemeasures. In [19], Solomyak proved that almost every self-similarmeasures
on the real line has a power decay of the Fourier transform at infinity. Varjú andYu [24]
provided quantitative decay rates of Fourier transform of some self-similar measures,
using random walks on lattices and Diophantine approximation in number fields.
Considering the interplay between the behavior of Fourier transform and the absolute
continuity of a measure, that the faster the Fourier transform of a measure tends to zero
the more regular the measure is, we focus our consideration on the Fourier dimensions
of in-homogeneous self-similar measures.

Definition 1.2 For a Borel probability measure μ on R
d , we define the infinity lower

Fourier dimension �∞(μ) of the measure μ by

�∞(μ) = lim inf
R→∞

log sup
|x |≥R

|μ̂(x)|
− log R

. (1.5)

For q ∈ (0,∞), we define the qth lower Fourier dimension �q(μ) of the measure μ

by

�q(μ) = lim inf
R→∞

log

(
1

Ld(B(0, R))

∫

B(0,R)

|μ̂(x)|q dx
) 1

q

− log R
, (1.6)

where Ld denotes the d-dimensional Lebesgue measure.
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The Fourier dimension of a measure μ on R
d measures the polynomial rate of

decay of Fourier transform of μ. Usually it is very difficult to calculate the Fourier
dimension bounds directly. During the past 20 years, there has been an enormous
interest in investigating Fourier dimensions of self-similar measures and there is a
huge body of literature discussing this problem, see, for example, Bluhm [4], Hu [9],
Hu andLau [10], Lau [12], Lau andWang [14], Strichartz [20–23], while the results are
limited in the in-homogeneous case. The main purpose of this paper is to investigate
the asymptotic behavior of the Fourier transform of an in-homogeneous self-similar
measure and relate its qth lower Fourier dimensions to the corresponding self-similar
measure and the condensation measure.

We now proceed to describe our main results in more detail.

1.1 Statement of Results

Throughout this paper, we fix an in-homogeneous self-similar measure μ satisfying

μ =
N∑

j=1

p jμ ◦ S−1
j + pν, (1.7)

where (p1, . . . , pN , p) is a probability vector, ν is a Borel probability measure on Rd

with the compact support C , and {S j }Nj=1 is an IFS of similarities. Each contraction
similarity S j has the form

S j x = r j A j x + b j , (1.8)

where 0 < r j < 1, A j is an orthogonal matrix, and b j is a vector in Rd .

Definition 1.3 We say that an IFS, {S j }Nj=1, satisfies the open set condition (OSC) if
there exists an open, non-empty and bounded set U such that

⋃
j S j (U ) ⊂ U and

S j (U ) ∩ Sk(U ) = ∅ for all j 
= k.

Definition 1.4 We say that an IFS, {S j }Nj=1, satisfies the equi-contractive condition if
all the contraction ratios r1, . . . , rN coincide, i.e. if r1 = · · · = rN .

Main Theorem. Let μ be the in-homogeneous self-similar measure with the conden-
sation measure ν. Define t and u by

∑

j

p j r
−t
j = 1,

∑

j

p2j r
−u
j = 1.

Then the following statements hold.

(i) For all q ≥ 1, we have

�q(ν) ≥ �q(μ) ≥ min{�q(ν), t}.
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(ii) If r1 = · · · = rN = r , A1 = · · · = AN = A, then for all q > 0,

�q(ν) ≥ �q(μ) ≥ min{�q(ν), t}.

(iii) If r1 = · · · = rN = r , A1 = · · · = AN = A and the OSC is satisfied, then

�q(μ) ≥

⎧
⎪⎨

⎪⎩

min
{u
2
, �q(ν)

}
, if 0 < q ≤ 2;

min
{u
q

, �q(ν)
}
, if 2 ≤ q.

Recently, Zhang and Xiao studied the infinity lower Fourier dimensions �∞(μ) of
the in-homogeneous self-similar measure μ and obtained the following result in [26].

Theorem 1.5 ([26], Theorem 7) Let μ be the in-homogeneous self-similar measure,
and let ν be the condensation measure. Then

�∞(ν) ≥ �∞(μ) ≥ min{�∞(ν), t}.

In [18], it has been shown that in the equi-contrative case the lower bounds for the
infinity lower Fourier dimension �∞(μ) and the 2nd lower Fourier dimension �2(μ)

satisfy analogous equations. It is natural to expect that the similar result holds for an
arbitrary qth lower Fourier dimension �q(μ). Thus, the authors raised the following
question in [18].

Question 1.6 ([18], Question 2.7) Assume that the OSC is satisfied, r1 = · · · = rN =
r > 0 and A1 = · · · = AN = A, where A is a rotation matrix. Let t be defined by

∑

j

p j r
−t = 1 i .e. t = log(1 − p)

log r
.

Is it true that

�q(μ) ≥ min{�q(ν), t}. (1.9)

for all q > 0? Is (1.9) true even if the equi-contractive condition is not satisfied?

Remark 1.7 Note that our Main Theorem (i) and (ii) give an affirmative answer to
the Question 1.6. It is also worth to be stressed that in the case of q ≥ 1, the lower
bound (1.9) for�q(μ) is true even without the open set condition, the equi-contractive
condition and the assumption that A1 = · · · AN = A.

The Fourier dimension of self-similar measures satisfying the open set condition
is well understood. In particular, the 2nd Fourier dimension �2(μ0) of a self-similar
measure μ0 satisfying (1.2) has received much attention and has been investigated in
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[13, 14, 21–23]. It is proved in [21] that if the OSC is satisfied, then the lower bound
for �2(μ0) can be improved as follows:

�2(μ0) ≥ u

2
.

Furthermore, it is also proved that if the equi-contractive condition and some further
conditions are satisfied, then

�2(μ0) = u

2
.

In view of the above results, it is natural to ask for an in-homogeneous analogue and,
hence, Olsen and Snigireva conjectured that the results on the 2nd Fourier dimension
of the in-homogeneous self-similar measures can be improved as follows.

Conjecture 1.8 ([18], Conjecture 2.5) Assume that the OSC is satisfied, r1 = · · · =
rN = r > 0 and A1 = · · · = AN = A, where A is a rotation matrix. We conjecture

�2(μ) ≥ min
{u
2
,�2(ν)

}
.

Remark 1.9 Note that our Main Theorem (iii) confirms the Conjecture 1.8.

Our proof of the Main Theorem (iii) relies heavily on the assumption that all the
contractions S j are equal up to translations, i.e., r1 = · · · = rN and A1 = · · · =
AN . In fact, we can also prove the similar result without this assumption. For the
compensation, we require the following condensation open set condition, appearing
in [5].

Definition 1.10 We say that an IFS, {S j }Nj=1, together with a condensation set C ,
satisfies the condensation open set condition (COSC), if the IFS satisfies the open set
condition and the open set U can be chosen such that

C ⊂ U \ (
⋃

j

S jU ).

Theorem 1.11 Assume that the IFS together with a condensation set C satisfies the
COSC. Letμ be the in-homogeneous self-similar measure with the condensation mea-
sure ν. Then

�2(ν) ≥ �2(μ) ≥ min
{u
2
,�2(ν)

}
.

The paper is organized as follows. Sections2, 3 and 4 are devoted to the proof of the
Main Theorem (i), (ii) and (iii) respectively. More precisely, in Sect. 2, we obtain the
lower and upper bounds for the qth lower Fourier dimensions of the in-homogeneous
self-similar measures, for q ≥ 1. In Sect. 3, we study the lower bounds for �q(μ)

in the case that 0 < q < 1 under the assumption that all the contractions S j are
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equal up to translations, i.e., r1 = · · · = rN and A1 = · · · = AN . In Sect. 4, the
lower bounds for the qth lower Fourier dimensions are improved under the open set
condition. Finally, in Sect. 5, we investigate the IFS satisfying the condensation open
set condition and prove Theorem 1.11.

2 Proof of theMain Theorem (i)

In this section, we study the qth lower Fourier dimensions of the in-homogeneous self-
similar measures and give the proof of theMain Theorem (i). We begin by introducing
some notations that will be used throughout the paper. Let

In = {1, . . . , N }n,
I∗ =

⋃

n

In,

i.e. In is the family of all finite strings j = j1 . . . jn of length n with entries jk ∈
{1, . . . , N }, and I∗ denotes the family of all finite strings j = j1 . . . jn with entries
jk ∈ {1, . . . , N }. For a finite string j = j1 . . . jn , let |j| denote the length of j, i.e.
|j| = n, and we write Sj = S j1 ◦ · · · ◦ S jn . Then Sj is a contraction similarity on R

d

and so has the form

Sjx = rjAjx + bj, (2.1)

where rj = r j1 . . . r jn ∈ (0, 1), Aj = A j1 . . . A jn is an orthogonal matrix and bj is a
vector in R

d . Similarly, we define pj = p j1 . . . p jn . Then it follows easily from (1.7)
that

μ =
∑

|j|=n

pjμ ◦ S−1
j + p

n−1∑

k=0

∑

|j|=k

pjν ◦ S−1
j . (2.2)

Taking Fourier transforms on both sides of (1.7), we have

μ̂(x) =
N∑

j=1

p j e
i〈x,b j 〉μ̂(L j x) + pν̂(x), (2.3)

where L j = r j A∗
j and A∗ denote the conjugate transpose of amatrix A. Taking Fourier

transforms on both sides of (2.2), putting L j = rjA∗
j = L jn . . . L j1 , we have

μ̂(x) =
∑

|j|=n

pje
i〈x,bj〉μ̂(L jx) + p

n−1∑

k=0

∑

|j|=k

pje
i〈x,bj 〉̂ν(L jx). (2.4)

We record one obvious fact, which we will use repeatedly.



55 Page 8 of 29 Journal of Fourier Analysis and Applications (2023) 29 :55

Lemma 2.1 Let {ak}nk=1 be a finite sequence of positive numbers. Then for any q > 0,

(
n∑

k=1

ak

)q

≤ nq
n∑

k=1

aqk .

Proof It is easy to see that

(
n∑

k=1

ak

)q

≤ nq max
k

aqk ≤ nq
n∑

k=1

aqk .

��
We shall first study the upper bounds for the qth lower Fourier dimensions �q(μ)

for all q > 0.

Proposition 2.2 Let μ be the in-homogeneous self-similar measure with the conden-
sation measure ν. Then �q(ν) ≥ �q(μ) for all q > 0.

Proof Recall that

μ̂(x) =
N∑

j=1

p j e
i〈x,b j 〉μ̂(L j x) + pν̂(x).

Noting that p j ∈ (0, 1), we therefore conclude from Lemma 2.1 that

|̂ν(x)|q ≤
(
N + 1

p

)q
⎛

⎝|μ̂(x)|q +
N∑

j=1

|μ̂(L j x)|q
⎞

⎠ . (2.5)

Without loss of generality, we may assume that �q(μ) > 0. Fix ε ∈ (0,�q(μ)). It
follows from the definition of �q(μ) that there exists a constant c > 0 such that

1

Ld(B(0, R))

∫

B(0,R)

|μ̂(x)|q dx ≤ cR−q(�q (μ)−ε),

for all R > 0, whence

1

Ld(B(0, R))

∫

B(0,R)

|μ̂(L j x)|q dx ≤ c(r j R)−q(�q (μ)−ε).

Combining these and (2.5), we conclude that

1

Ld (B(0, R))

∫

B(0,R)

|̂ν(x)|q dx
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≤
(
N + 1

p

)q
⎛

⎝ 1

Ld (B(0, R))

∫

B(0,R)

|μ̂(x)|q dx +
∑

j

1

Ld (B(0, R))

∫

B(0,R)

|μ̂(L j x)|q dx
⎞

⎠

≤
⎡

⎣c
(
N + 1

p

)q(
1 +

∑

j

r
−q(�q (μ)−ε)

j

)⎤

⎦ · R−q(�q (μ)−ε),

which clearly implies that �q(ν) ≥ �q(μ) − ε. Letting ε → 0, the statement
follows. ��

We then study the lower bounds for the qth lower Fourier dimensions �q(μ) in the
case of q ≥ 1. Note that the open set condition, the equi-contractive condition and the
assumption that A1 = · · · = An play no role in this case.

Proposition 2.3 Let μ be the in-homogeneous self-similar measure with the conden-
sation measure ν. For all q ≥ 1, we have �q(μ) ≥ min{�q(ν), t}.
Proof By taking absolute value in (2.4), we see that

|μ̂(x)| ≤
∑

|j|=n

pj|μ̂(L jx)| + p
n−1∑

k=0

∑

|j|=k

pj |̂ν(L jx)|, (2.6)

for all x ∈ R
d and n ∈ N. Noting that q ≥ 1, we deduce from (2.6) and Minkowski

inequality that, for all R > 0 and n ∈ N,

(
1

Ld (B(0, R))

∫

B(0,R)

|μ̂(x)|q dx
) 1

q ≤
∑

|j|=n

pj

(
1

Ld (B(0, R))

∫

B(0,R)

|μ̂(L jx)|q dx
) 1

q

+ p
n−1∑

k=0

∑

|j|=k

pj

(
1

Ld (B(0, R))

∫

B(0,R)

|̂ν(L jx)|q dx
) 1

q

.

(2.7)

Set rmin = min j r j , rmax = max j r j and

Rn = 1

rnmin

throughout the remaining parts of the proof of Proposition 2.3.
In order to obtain the lower bounds for �q(μ), we need to distinguish two cases.
Case 1 We first show that �q(μ) ≥ �q(ν) if 0 ≤ �q(ν) ≤ t . Without loss of

generality, we could assume that �q(ν) > 0. Fix ε ∈ (0,�q(ν)). It follows from the
definition of �q(ν) that there exists a constant c > 0 such that

(
1

Ld(B(0, R))

∫

B(0,R)

|̂ν(L j(x))|q dx
) 1

q ≤ c(rjR)−(�q (ν)−ε), (2.8)
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for any j ∈ I∗ and R > 0. Since �q(ν) ≤ t , we have

∑

j

p j r
−(�q (ν)−ε)

j <
∑

j

p j r
−t
j = 1. (2.9)

Define s by

∑

j

p j r
−s
min = 1. (2.10)

Then it is easy to see that ρ := s/t ∈ (0, 1]. Using (2.7), (2.8), (2.9), (2.10) and the
fact that |μ̂(x)| ≤ 1, we therefore conclude that

(
1

Ld(B(0, Rρ
n ))

∫

B(0,Rρ
n )

|μ̂(x)|q dx
) 1

q

≤
∑

|j|=n

pj + p
n−1∑

k=0

∑

|j|=k

pj

(
1

Ld(B(0, Rρ
n ))

∫

B(0,Rρ
n )

|̂ν(L jx)|q dx
) 1

q

≤ rsnmin + cp
n−1∑

k=0

∑

|j|=k

pj(rjR
ρ
n )−(�q (ν)−ε)

= (Rρ
n )−t + cp

n−1∑

k=0

⎛

⎝
∑

j

p j r
−(�q (ν)−ε)

j

⎞

⎠
k

(Rρ
n )−(�q (ν)−ε)

≤ (Rρ
n )−t + cp(Rρ

n )−(�q (ν)−2ε),

where, for the last inequality, we used the fact that n ≤ Rρε
n for n large enough. This

implies that �q(μ) ≥ �q(ν) − 2ε, and letting ε → 0 gives the desired result.
Case 2 It remains to show that �q(μ) ≥ t if t < �q(ν). Fix ε > 0 small enough.

Then there exists a constant c > 0 such that

(
1

Ld(B(0, R))

∫

B(0,R)

|μ̂(L j(x))|q dx
) 1

q ≤ c(rjR)−(�q (μ)−ε),

and

(
1

Ld(B(0, R))

∫

B(0,R)

|̂ν(L j(x))|q dx
) 1

q ≤ c(rjR)−(�q (ν)−ε),

for any j ∈ I∗ and R > 0. Thus, it follows from (2.7) that for all R > 0 and n ∈ N,
one has
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(
1

Ld(B(0, R))

∫

B(0,R)

|μ̂(x)|q dx
) 1

q

≤ cR−(�q (μ)−ε)

⎛

⎝
∑

j

p j r
−(�q (μ)−ε)

j

⎞

⎠
n

+ cpR−(�q (ν)−ε)
n−1∑

k=0

⎛

⎝
∑

j

p j r
−(�q (ν)−ε)

j

⎞

⎠
k

.

(2.11)

Arguing by contradiction, we assume that �q(μ) < t . Thus, we can choose a
constant ε0 > 0 such that

�q(μ) + 2 log rmin

log rmax
ε0 < t .

Since
∑

j p j r
−t
j = 1, we obtain that

∑

j

p j r
−(�q (μ)−ε)

j ≤
⎛

⎝
∑

j

p j r
−(�q (μ)+ 2 log rmin

log rmax
ε0)

j

⎞

⎠ ·
(

1

rmin

)−(
log rmax
log rmin

ε+2ε0)

≤
(

1

rmin

)−(ε+ε0)

,

and

∑

j

p j r
−(�q (ν)−ε)

j ≤
⎛

⎝
∑

j

p j r
−t
j

⎞

⎠ ·
(

1

rmin

)�q (ν)−t−ε

=
(

1

rmin

)�q (ν)−t−ε

,

provided that ε > 0 is small enough. Combining this with (2.11), we have

(
1

Ld (B(0, Rn))

∫

B(0,Rn)

|μ̂(x)|q dx
) 1

q

≤ cR
−(�q (μ)−ε)

n

⎛

⎝
∑

j

p j r
−(�q (μ)−ε)

j

⎞

⎠
n

+ cpR
−(�q (ν)−ε)

n

n−1∑

k=0

⎛

⎝
∑

j

p j r
−(�q (ν)−ε)

j

⎞

⎠
k

≤ cR
−(�q (μ)+ε0)

n + cpr
�q (ν)−t−ε

min

1 − r
�q (ν)−t−ε

min

R−t
n ,

provided that ε > 0 is small enough. Thus, �q(μ) ≥ �q(μ) + ε0, a contradiction.
This completes the proof. ��
Proof of theMain Theorem (i) The proof of the Main Theorem (i) follows immediately
from Propositions 2.2 and 2.3. ��
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3 Proof of theMain Theorem (ii)

In this section we prove the Main Theorem (ii) and, thus, we will assume that all the
contractions S j are equal up to translations, i.e., r1 = · · · = rN = r , A1 = · · · =
AN = A. Under this assumption, putting L = r A∗, it follows from (2.4) that

|μ̂(x)| ≤
∑

|j|=n

pj|μ̂(Lnx)| + p
n−1∑

k=0

∑

|j|=k

pj |̂ν(Lkx)|

≤ (1 − p)n +
n−1∑

k=0

(1 − p)k |̂ν(Lkx)|,
(3.1)

for all x ∈ R
d and n ∈ N.

Proof We only need to consider the case that 0 < q < 1. In this case, we deduce
from (3.1) that

|μ̂(x)|q ≤ (1 − p)nq +
n−1∑

k=0

(1 − p)kq |̂ν(Lkx)|q ,

for all x ∈ R
d and n ∈ N. Without loss of generality, we may assume that �q(ν) > 0.

Fix ε > 0. It follows from the definition of �q(ν) that there exists a constant c > 0
such that,

1

Ld(B(0, R))

∫

B(0,R)

|̂ν(Lkx)|q dx ≤ c(rk R)−q(�q (ν)−ε),

for all R > 0 and k ∈ N. Thus, we obtain that

1

Ld(B(0, r−n))

∫

B(0,r−n)

|μ̂(x)|q dx

≤ (1 − p)nq +
n−1∑

k=0

(1 − p)kq
1

Ld(B(0, r−n))

∫

B(0,r−n)

|̂ν(Lkx)|q dx

≤ rnqt + c
n−1∑

k=0

rkqtr (n−k)q(�q (ν)−ε)

≤ rnqt + c
n−1∑

k=0

(
rkq·min{t,(�q (ν)−ε)}) (r (n−k)q·min{t,(�q (ν)−ε)})

≤
(

1

rn

)−qt

+ c

(
1

rn

)−q·min{t−ε,(�q (ν)−2ε)}
,

(3.2)
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where, for the last inequality, we used the fact that n ≤ r−qnε for n large enough.
This clearly implies that �q(μ) ≥ min{t − ε,�q(ν) − 2ε}. The statement follows by
letting ε → 0, ��

4 Proof of Main Theorem (iii)

In this section, we will prove the Main Theorem (iii). As in Sect. 3, we shall assume
that r1 = · · · = rN = r and A1 = · · · = AN = A and set L = r A∗. Using this
notation, it therefore follows from (2.4) that

μ̂(x) =
∑

|j|=n

pje
i〈x,bj〉μ̂(Lnx) + p

n−1∑

k=0

∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx), (4.1)

for all x ∈ R
d and n ∈ N. Furthermore, we also assume that the IFS, {S j }Nj=1, satisfies

the open set condition.

Lemma 4.1 Assume that the OSC is satisfied. Assume further that r1 = · · · = rN = r
and A1 = · · · = AN = A. Then there exists a constant κ > 0 such that

|bj1 − bj2 | ≥ κrn

for all j1, j2 ∈ In with j1 
= j2.

Proof It follows from the open set condition that there exist an open, non-empty and
bounded set U such that S j (U ) ⊂ U for all j , and S j (U ) ∩ Sk(U ) = ∅ for all j 
= k.
Fix a point x ∈ U and write κ = 2 dist(x, ∂U ). It is easy to see that κ > 0 since U is
open. Hence,

|bj1 − bj2 | = |Sj1(x) − Sj2(x)|
≥ dist(Sj1(x), ∂Sj1(U )) + dist(Sj2(x), ∂Sj2(U )) = κrn .

This completes the proof. ��
Lemma 4.2 Assume that the OSC is satisfied. Assume further that r1 = · · · = rN = r
and A1 = · · · = AN = A. Let C be the condensation set. Then there exists a constant
N0 such that for any k ∈ N and i ∈ Ik , we have

#
{
j ∈ Ik : dist(SiC, SjC) ≤ rk

}
≤ N0.

Proof Fix x0 ∈ C and i ∈ Ik . By Lemma 4.1, there exists a constant κ > 0 such that
for any j1, j2 ∈ Ik with j1 
= j2,

|Sj1x0 − Sj2x0| = |bj1 − bj2 | ≥ κrk,
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which implies that the collection of balls {B(Sjx0,
1
3κr

k)}j∈Ik is pairwise disjoint.
Moreover, if dist(SiC, SjC) ≤ rk for some j ∈ Ik , then the corresponding ball
B(Sjx0,

1
3κr

k) is contained in the ball centered at Six0 with radius (1 + 2 diamC +
1
3κ)rk . Summing the volume of these balls, it follows that

#
{
j ∈ Ik : dist(SiC, SjC) ≤ rk

}
·
(
1

3
κrk
)d

≤
(
1 + 2 diamC + 1

3
κ

)d
rkd ,

which completes the proof. ��

The following result is well-known in Fourier Analysis, and we provide a detailed
proof for the convenience of the reader. As usual, the support of f , spt f , is the closure
of {x : f (x) 
= 0}.
Lemma 4.3 For any κ > 0, there exists a non-negative function h : Rd → R such
that h ≥ 1 on B(0, 1) and ĥ(x) = 0 for |x | ≥ κ .

Proof Let ψ be a Schwartz function on R
d for which ψ ≥ 0, sptψ ⊂ B(0, 1) and∫

ψ = 2. Let η = |ψ̂(x)|2. Then η̂ = ψ ∗ ψ̃ and therefore, spt η̂ ⊂ B(0, 1), where
ψ̃(x) = ψ(−x).Hence, bothη and η̂ are non-negative, andη(0) = ψ̂(0)2 = (

∫
ψ)2 =

4. It follows from the continuity that there exists a constant κ0 < κ such that η(x) ≥ 1
for any |x | ≤ κ0. Define h(x) = η(κ0x). Then h is non-negative and h ≥ 1 on B(0, 1).
Since spt η̂ ⊂ B(0, 1) and

ĥ(x) = κ−d
0 η̂(κ−1

0 x),

we have spt ĥ ⊂ B(0, κ0). Noting that κ0 < κ , the statement follows. ��

We shall first prove the following simplified version of the Main Theorem (iii),
which confirms the Conjecture 1.8.

Proposition 4.4 Assume that the OSC is satisfied. Assume further that r1 = · · · =
rN = r and A1 = · · · = AN = A. Let μ be the in-homogeneous self-similar measure
with the condensation measure ν. Then

�2(ν) ≥ �2(μ) ≥ min
{u
2
,�2(ν)

}
.

Proof Without loss of generality, wemay assume that�2(ν) > 0. Fix ε > 0. It follows
from the definition of �2(ν) that there exists a constant c > 0 such that

1

Ld(B(0, R))

∫

B(0,R)

|̂ν(Lkx)|2 dx ≤ c(rk R)−2(�2(ν)−ε),

for all R > 0 and k ∈ N.
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Fix α > 0. We first prove that there exist constants C1 = C1(ε) and C2 = C2(α)

such that

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
2

dx

≤ C1r
kur2(n−k)(�2(ν)−ε) + C2r

(n−k)α, (4.2)

for any integers k and n with 0 ≤ k ≤ n. Define the function ψ : Rd → R by

ψ(x) :=
⎧
⎨

⎩
exp

(
1

|x |2 − 2
+ 1

)
if |x | < 2;

0 if |x | ≥ 2.

It is easy to verify that ψ is a non-negative, infinitely differentiable function on R
d

with the following properties: (i) ψ(x) ≥ 1 on B(0, 1); (ii) sptψ ⊂ B(0, 2); (iii)
ψ(x) ≤ 3 for all x ∈ R

d . Then we have

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
2

dx

≤ 1

Ld(B(0, r−n))

∫

B(0,r−n)

ψ(rnx)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
2

dx

≤ 1

Ld(B(0, r−n))

∫
ψ(rnx)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
2

dx

≤
∣∣∣∣

1

Ld(B(0, r−n))

∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)≤rk

pj1 pj2

∫
ψ(rnx)ei〈x,bj1−bj2 〉|̂ν(Lkx)|2 dx

∣∣∣∣

+
∣∣∣∣

1

Ld(B(0, r−n))

∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)>rk

pj1 pj2

∫
ψ(rnx)ei〈x,bj1−bj2 〉|̂ν(Lkx)|2 dx

∣∣∣∣.

(4.3)

By Lemma 4.2 and our choice of ψ , we have

∣∣∣∣
1

Ld (B(0, r−n))

∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)≤rk

pj1 pj2

∫
ψ(rnx)ei〈x,bj1−bj2 〉|̂ν(Lkx)|2 dx

∣∣∣∣

≤
∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)≤rk

pj1 pj2 · 1

Ld (B(0, r−n))

∫

B(0,2r−n)

|ψ(rnx)ei〈x,bj1−bj2 〉̂ν(Lkx)2| dx
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≤
∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)≤rk

pj1 pj2

(
2d

Ld (B(0, c2r−n))

∫

B(0,2r−n)

3|̂ν(Lkx)2| dx
)

≤

⎛

⎜⎜⎜⎝
∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)≤rk

p2j1 + p2j2
2

⎞

⎟⎟⎟⎠ 2d · 3c(2rk−n)−2(�2(ν)−ε)

≤ C1r
kur2(n−k)(�2(ν)−ε), (4.4)

where C1 = 3 · 2d−2(�2(ν)−ε)N0c, and where the last inequality follows from the fact
that

∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)≤rk

p2j1 + p2j2 =
∑

|j1|=k

∑

|j2|=k
dist(Sj1C,Sj2C)≤rk

p2j1 +
∑

|j2|=k

∑

|j1|=k
dist(Sj1C,Sj2C)≤rk

p2j2

≤ N0

∑

|j1|=k

p2j1 + N0

∑

|j2|=k

p2j2

= 2N0 · rku .

Using the definition of Fourier transform and Fubini’s theorem, we have

∫
ψ(rnx)ei〈x,bj1−bj2 〉|̂ν(Lkx)|2 dx

=
∫

ψ(rnx)ei〈x,bj1−bj2 〉
(∫

ei〈Lk x,y〉dν(y)

)(∫
ei〈Lk x,−z〉dν(z)

)
dx

=
∫∫∫

ψ(rnx)ei〈x,Sj1 y−Sj2 z〉 dxdν(y)dν(z)

= r−nd
∫∫

ψ̂(r−n(Sj1 y − Sj2 z))dν(y)dν(z),

(4.5)

for all |j1| = |j2| = k. Moreover, if dist(Sj1C, Sj2C) > rk , then

|r−n(Sj1 y − Sj2 z)| ≥ r−n · dist(Sj1C, Sj2C) > rk−n,

for any y, z ∈ C . Since ψ is compactly supported infinitely differentiable function, it
follows that ψ is a Schwartz function on Rd and, thus, its Fourier transform ψ̂ is also
a Schwartz function. Then there exists a constant Cα > 0 such that |ψ̂(x)| ≤ Cα|x |−α

for all x ∈ R
d . Hence,

∣∣∣∣
1

Ld (B(0, r−n))

∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)>rk

pj1 pj2

∫
ψ(rnx)ei〈x,bj1−bj2 〉|̂ν(Lkx)|2 dx

∣∣∣∣
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≤
∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)>rk

pj1 pj2 · 1

Ld (B(0, r−n))

∣∣∣∣
∫

ψ(rnx)ei〈x,bj1−bj2 〉|̂ν(Lkx)|2 dx
∣∣∣∣

≤
∑

|j1|=|j2|=k
dist(Sj1C,Sj2C)>rk

pj1 pj2 · 1

Ld (B(0, 1))

∫∫ ∣∣ψ̂(r−n(Sj1 y − Sj2 z))
∣∣ dν(y)dν(z)

≤ Cα

Ld (B(0, 1))
· r (n−k)α. (4.6)

Combining this with (4.3) and (4.4), the inequality (4.2) follows.
We then show that there exists a constant C3 > 0 such that

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx ≤ C3r
ku, (4.7)

for any integers k and n with 0 ≤ k ≤ n. Let κ be the constant given by Lemma 4.1,
and let h : Rd → R be the function for which the conclusion of Lemma 4.3 holds
with κ . Then we have

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx

≤ 1

Ld(B(0, r−n))

∫

B(0,r−n)

h(rnx)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx

≤ 1

Ld(B(0, r−n))

∫
h(rnx)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx

≤ 1

Ld(B(0, r−n))

∑

|j1|=|j2|=k

pj1 pj2

∫
h(rnx)ei〈x,bj1−bj2 〉 dx

= 1

Ld(B(0, 1))

∑

|j1|=|j2|=k

pj1 pj2 · ĥ(r−n(bj1 − bj2)).

(4.8)

If |j1| = |j2| = k with j1 
= j2, by Lemma 4.1, one has |r−n(bj1 −bj2)| ≥ r−nκrk ≥ κ

and therefore, by Lemma 4.3,

ĥ(r−n(bj1 − bj2)) = 0.

Combining this with (4.8), we obtain that

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx
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≤ 1

Ld(B(0, 1))

∑

|j1|=|j2|=k

pj1 pj2 · ĥ(r−n(bj1 − bj2))

=
(

ĥ(0)

Ld(B(0, 1))

)∑

|j|=k

p2j

=
(

ĥ(0)

Ld(B(0, 1))

)
· rku . (4.9)

This completes the proof of (4.7).
Finally, let us estimate �2(μ). Fix ρ ∈ (0, 1). It follows from (4.1) that

|μ̂(x)| ≤
∣∣∣∣
∑

|j|=n

pje
i〈x,bj〉μ̂(Lnx)

∣∣∣∣+ p
n−1∑

k=0

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣

≤
[ρn]∑

k=0

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣+
n∑

k=[ρn]+1

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣,

(4.10)

wherewewrite [x] for the largest integer less than x ∈ R. UsingMinkowski inequality,
we have

(
1

Ld(B(0, r−n))

∫

B(0,r−n)

|μ̂(x)|2 dx
) 1

2 ≤ S1 + S2, (4.11)

where

S1 =
[ρn]∑

k=0

⎛

⎝ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
2

dx

⎞

⎠

1
2

,

and

S2 =
n∑

k=[ρn]+1

⎛

⎝ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx

⎞

⎠

1
2

.

Putting α = ρu
1−ρ

, it follows from (4.2) that

S1 ≤
[ρn]∑

k=0

(
C1r

kur2(n−k)(�2(ν)−ε) + C2r
(n−k)α

) 1
2

≤
[ρn]∑

k=0

(
C

1
2
1 r

k( u2 )r (n−k)(�2(ν)−ε) + C
1
2
2 r

(n−k) α
2

)



Journal of Fourier Analysis and Applications (2023) 29 :55 Page 19 of 29 55

≤ (ρn + 1)

(
C

1
2
1 r

n·min{ u2 ,�2(ν)−ε} + C
1
2
2 r

(n−ρn) α
2

)

≤ C
1
2
1

(
1

rn

)−min{ u2−ε,�2(ν)−2ε}
+ C

1
2
2

(
1

rn

)−(
ρu
2 −ε)

, (4.12)

where, for the last inequality, we used the fact that ρn + 1 ≤ n + 1 ≤ r−nε for n large
enough. Similarly, it follows from (4.7) that

S2 ≤
n∑

k=[ρn]+1

(
C3r

ku
) 1

2 ≤
n∑

k=[ρn]+1

C
1
2
3 r

ρn( u2 ) ≤ C
1
2
3

(
1

rn

)−(
ρu
2 −ε)

, (4.13)

provided that n is large enough. Combining (4.12) and (4.13), together with (4.11),
yields

�2(μ) ≥ min
{u
2

− ε,�2(ν) − 2ε,
ρu

2
− ε
}

.

The statment follows by letting ε → 0 and ρ → 1. ��
We can now prove the Main Theorem (iii).

Proof Without loss of generality, we could assume that �q(ν) > 0. Fix ε > 0. It
follows from the definition of �q(ν) that there exists a constant c > 0 such that

1

Ld(B(0, R))

∫

B(0,R)

|̂ν(Lkx)|q dx ≤ c(rk R)−q(�q (ν)−ε),

for all R > 0 and k ∈ N. Fix ρ ∈ (0, 1) and recall that

|μ̂(x)| ≤
[ρn]∑

k=0

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣+
n∑

k=[ρn]+1

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣.

To prove the statement, we need to distinguish two cases.
Case 1 q > 2. In this case, using Minkowski inequality, we obtain that

(
1

Ld(B(0, r−n))

∫

B(0,r−n)

|μ̂(x)|q dx
) 1

q

≤
[ρn]∑

k=0

⎛

⎝ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
q

dx

⎞

⎠

1
q

+
n∑

k=[ρn]+1

⎛

⎝ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
q

dx

⎞

⎠

1
q

.

(4.14)
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Set α = ρu
1−ρ

. We follow the proof of (4.2), replacing �2(ν) therein by �q(ν), and
therefore, we obtain that there exist constants C1 and C2 such that

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
q

dx

≤ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

|̂ν(Lkx)|q dx

≤ C1r
kurq(n−k)(�q (ν)−ε) + C2r

(n−k)α.

(4.15)

Similarly, it follows from (4.7) that there exists a constant C3 such that

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
q

dx

≤ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx ≤ C3r
ku .

(4.16)

Now we go word by word along the final part of the proof of Proposition 4.4, replac-
ing (4.11), (4.2) and (4.7) therein by (4.14), (4.15) and (4.16) respectively, and we
obtain

(
1

Ld(B(0, r−n))

∫

B(0,r−n)

|μ̂(x)|q dx
) 1

q

≤ C
1
q
1

(
1

rn

)−min{ uq −ε,�q (ν)−2ε}
+ C

1
q
2

(
1

rn

)−(
ρu
q −ε)

+ C
1
q
3

(
1

rn

)−(
ρu
q −ε)

,

provided that n is large enough, and hence, �q(μ) ≥ min{ uq ,�q(ν)}.
Case 2 0 < q < 2. In this case, by Lemma 2.1, we obtain that

1

Ld(B(0, r−n))

∫

B(0,r−n)

|μ̂(x)|q dx

≤ (n + 1)q
[ρn]∑

k=0

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
q

dx

+ (n + 1)q
n∑

k=[ρn]+1

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
q

dx .

(4.17)

Set α = ρu
1−ρ

. It follows the proof of (4.2) again that there exist constants C1 and C2
such that

1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj 〉̂ν(Lkx)

∣∣∣∣
q

dx
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= 1

Ld(B(0, r−n))

∫

B(0,r−n)

(∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

|̂ν(Lkx)|q
) q

2 · |̂ν(Lkx)|q(1− q
2 ) dx

≤
⎛

⎝ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

|̂ν(Lkx)|q dx
⎞

⎠

q
2

×
(

1

Ld(B(0, r−n))

∫

B(0,r−n)

|̂ν(Lkx)|q dx
) 2−q

2

≤
(
C1r

kurq(n−k)(�q (ν)−ε) + C2r
(n−k)α

) q
2 · c(rk−n)−q(�q (ν)−ε)· 2−q

2 (4.18)

Moreover, it follows from (4.7) that there exists a constant C3 such that

⎛

⎝ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
q

dx

⎞

⎠

1
q

≤
⎛

⎝ 1

Ld(B(0, r−n))

∫

B(0,r−n)

∣∣∣∣
∑

|j|=k

pje
i〈x,bj〉

∣∣∣∣
2

dx

⎞

⎠

1
2

≤ C3r
ku
2 .

(4.19)

Again, we go word by word along the final part of the proof of Proposition 4.4,
replacing (4.11), (4.2) and (4.7) therein by (4.17), (4.18) and (4.19) respectively, and
we obtain that, if 0 < q < 2,

�q(μ) ≥ min{u
2
,�q(ν)}.

This completes the proof. ��
Remark 4.5 Moreover, in ourMain Theorem and Proposition 4.4, the assumptions that
all the contractions S j are equal up to translations can be replaced by a slightly weaker
assumption that all the rotations A j generate a finite group with m elements. Indeed,
define

< A j >= {B1, . . . , Bm}.

We can always write the iterative formula as a sum of m sums, that is,

μ̂(x) =
∑

|j|=n

pje
i〈x,bj〉μ̂(L jx) + p

n−1∑

k=0

∑

|j|=k

pje
i〈x,bj 〉̂ν(L jx)

=
m∑

l=1

⎛

⎝
∑

|j|=n,Aj=Bl

pje
i〈x,bj〉μ̂(rn Bl x) + p

n−1∑

k=0

∑

|j|=k,Aj=Bl

pje
i〈x,bj 〉̂ν(rk Bl x)

⎞

⎠ .
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Then we can repeat the above argument for each of the m smaller sums, which leads
to the same result.

5 The Condensation Open Set Condition

In this section, we prove Theorem 1.11. Therefore, we assume that the IFS, {S j }Nj=1,
together with the condensation setC , satisfies the COSC, i.e. there exists a non-empty,
open and bounded set U such that S j (U ) ⊂ U for all j , S j (U ) ∩ Sk(U ) = ∅ for all
j 
= k, and such that

C ⊂ U \
⋃

S j (U ).

Wewould like to emphasize that wewill not assume that the equi-contractive condition
holds in this section, and thus, all the contracting ratios, {rj : j ∈ In}, of strings of
length n are not comparable as n goes to ∞. However, we can more or less replace
the equi-contractive condition and the set In by introducing the concept of δ-stopping
set.

Given δ ∈ (0, 1), we define the δ-stopping set, �δ , by

�δ = {j ∈ I∗ : rj ≤ δ < rj−
}
,

where j− = ( j1, . . . , jk−1) for j = ( j1, . . . , jk). Then it is easy to see that

∑

j∈�δ

p2j r
−u
j = 1. (5.1)

Furthermore, let 
δ denote the set of all prefixes of strings in �δ , i.e. 
δ = {j ∈ I∗ :
rj > δ}. Using this notation, it follows from (1.7) that

μ =
∑

j∈�δ

pjμ ◦ S−1
j + p

∑

j∈
δ

pjν ◦ S−1
j ,

and thus,

|μ̂(x)| ≤
∣∣∣∣
∑

j∈�δ

pje
i〈x,bj〉μ̂(L jx)

∣∣∣∣+
∣∣∣∣
∑

j∈
δ

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣. (5.2)

Observe that the δ-stopping set �δ plays in the general case the similar role the set In

plays in the equi-contractive case.
The following result is a simple consequence of the COSC.

Lemma 5.1 Assume that the IFS, together with the condensation set C, satisfies the
COSC. Then there exists a constant κ > 0 such that, for any i, j ∈ I∗ with i 
= j, one
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has

dist(SiC, SjC) ≥ κ · min{ri, rj}.

Proof Without loss of generality, we could assume that |j| ≥ |i|. Let U be the open
set given by the COSC. If i is a prefix of j, then it follows from the COSC that
SjU ∩ SiC = ∅ and SjC ⊂ SjU . Hence,

dist(SiC, SjC) ≥ dist(SjC, ∂SjU ) = rj dist(C, ∂U ).

If i is not a prefix of j, then SiU ∩ SjU = ∅. Hence, we also obtain that

dist(SiC, SjC) ≥ dist(SjC, ∂SjU ) = rj dist(C, ∂U ).

The statement follows by setting κ = dist(C, ∂U ). ��
Lemma 5.2 Assume that the IFS, together with the condensation set C, satisfies the
COSC. Let U be the open set given by the COSC. Given κ > 0, there exists a positive
integer N0 such that for any δ > 0 and any i ∈ �δ , one has

#
{
j ∈ �δ : dist(SiU , SjU ) ≤ κδ

} ≤ N0.

Proof SinceU is open and bounded, we could assume thatU contains a ball of radius
a, and is contained in a ball of radius b. Recall that rmin = min j r j . It follows from
the definition of δ-stopping set that, for any j ∈ �δ ,

rminδ < rj ≤ δ,

which implies that each SjU , j ∈ �δ , contains a ball of radius arminδ, and is contained
in a ball of radius bδ. Fix i ∈ �δ . If dist(SiU , SjU ) ≤ κδ for some κ > 0, then all of
these SjU are contained in a ball of radius (4b + κ)δ. Then, summing the volume of
the corresponding interior balls of radius arminδ, it follows that

#
{
j ∈ �δ : dist(SiU , SjU ) ≤ κδ

} · (arminδ)
d ≤ ((4b + κ)δ)d ,

which completes the proof. ��
We can now prove Theorem 1.11. Note that its proof is similar to that of Proposi-

tion 4.4.

Proof Without loss of generality, wemay assume that�2(ν) > 0. Fix ε > 0. It follows
from the definition of �2(ν) that there exists a constant c > 0 such that

1

Ld(B(0, R))

∫

B(0,R)

|̂ν(L jx)|2 dx ≤ c(rjR)−2(�2(ν)−ε),
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for all R > 0 and j ∈ I∗. Fix ρ ∈ (0, 1). It follows from (5.2) that, for any δ > 0,

|μ̂(x)| ≤
∣∣∣∣
∑

j∈�

pje
i〈x,bj〉μ̂(L jx)

∣∣∣∣+
∣∣∣∣
∑

j∈
1

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣+
∣∣∣∣
∑

j∈
2

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣,

(5.3)

where � = �δ is the δ-stopping set, 
1 = {j ∈ I∗ : δ < rj ≤ δρ} and 
2 = {j ∈
I∗ : δρ < rj}. To prove the statement, it suffices to show that there exist constants
C1,C2,C3 > 0 such that, for any δ > 0 small enough, we have

⎛

⎝ 1

Ld(B(0, δ−1))

∫

B(0,δ−1)

∣∣∣∣
∑

j∈�

pje
i〈x,bj〉μ̂(L jx)

∣∣∣∣
2

dx

⎞

⎠

1
2

≤ C1

(
1

δ

)− u
2

, (5.4)

⎛

⎝ 1

Ld(B(0, δ−1))

∫

B(0,δ−1)

∣∣∣∣
∑

j∈
1

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣
2

dx

⎞

⎠

1
2

≤ C2

(
1

δ

)− ρu−ε
2

, (5.5)

and

⎛

⎝ 1

Ld (B(0, δ−1))

∫

B(0,δ−1)

∣∣∣∣
∑

j∈
2

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣
2

dx

⎞

⎠

1
2

≤ C3

(
1

δ

)−min
{
�2(ν)−2ε, ρu−ε

2

}

.

(5.6)

Indeed, combining these three inequalities with (5.3, we deduce that

�2(μ) ≥ min

{
u

2
,�2(ν) − 2ε,

ρu − ε

2

}
.

Hence, the desired result follows by letting ε → 0 and ρ → 1.
We shall first prove that

∑

j∈
1∪
2

p2j r
−u
j ≤ δ−ε, (5.7)

provided that δ > 0 is small enough. Indeed, for any j ∈ 
1 ∪ 
2, we have that
δ < rj ≤ r |j|

max, and thus,

|j| ≤ log δ

log rmax
≤ δ−ε,
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provided that δ > 0 is small enough. Hence,

∑

j∈
1∪
2

p2j r
−u
j ≤

[δ−ε ]∑

k=1

∑

|j|=k

p2j r
−u
j =

[δ−ε ]∑

k=1

⎛

⎝
N∑

j=1

p2j r
−u
j

⎞

⎠
k

≤ δ−ε .

This proves the inequality (5.7).
To prove (5.4), let κ > 0 be the constant given by Lemma 5.1, and h : Rd → R

the function such that the conclusion of Lemma 4.3 holds with κ . Then

1

Ld (B(0, δ−1))

∫

B(0,δ−1)

∣∣∣∣
∑

j∈�

pje
i〈x,bj〉μ̂(L jx)

∣∣∣∣
2

dx

≤ 1

Ld (B(0, δ−1))

∫

B(0,δ−1)

h(δx)

∣∣∣∣
∑

j∈�

pje
i〈x,bj〉μ̂(L jx)

∣∣∣∣
2

dx

≤ 1

Ld (B(0, δ−1))

∫
h(δx)

∣∣∣∣
∑

j∈�

pje
i〈x,bj〉μ̂(L jx)

∣∣∣∣
2

dx

≤ 1

Ld (B(0, δ−1))

∑

j1,j2∈�

dist(Sj1U ,Sj2U )≤κδ

pj1 pj2

∫
h(δx) dx

+
∣∣∣∣

1

Ld(B(0, δ−1))

∑

j1,j2∈�

dist(Sj1U ,Sj2U )>κδ

pj1 pj2

∫
h(δx)ei〈x,bj1−bj2 〉μ̂(L j1 x)μ̂(L j2 x) dx

∣∣∣∣.

(5.8)

It follows from Lemma 5.2 that

1

Ld(B(0, δ−1))

∑

j1,j2∈�

dist(Sj1U ,Sj2U )≤κδ

pj1 pj2

∫
h(δx) dx

≤ ĥ(0)

Ld(B(0, δ−1))

∑

j1,j2∈�

dist(Sj1U ,Sj2U )≤κδ

p2j1 + p2j2
2

≤ N0ĥ(0)

Ld(B(0, δ−1))

∑

j∈�

p2j ≤ N0ĥ(0)

Ld(B(0, δ−1))
· δu,

(5.9)

where the last inequality follows from (5.1). Consider j1, j2 ∈ � with dist(Sj1U , Sj2U )

> κδ. Arguing as in (4.5), using sptμ ⊂ U and our choice of h, we have

∫
h(δx)ei〈x,bj1−bj2 〉μ̂(L j1x)μ̂(L j2x) dx

=
∫∫

δ−d · ĥ(δ−1(Sj1 y − Sj2 z))dμ(y)dμ(z) = 0.
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Combining this with (5.8) and (5.9), the inequality (5.4) follows.
Let us prove (5.5). An argument similar to the proof of the inequality (5.4) suggests

that

1

Ld(B(0, δ−1))

∫

B(0,δ−1)

∣∣∣∣
∑

j∈
1

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣
2

dx

≤
∑

j1,j2∈
1

pj1 pj2 · 1

Ld(B(0, δ−1))

∫
h(δx)ei〈x,bj1−bj2 〉̂ν(L j1x )̂ν(L j2x) dx

=
∑

j1,j2∈
1

pj1 pj2 · 1

Ld(B(0, 1))

∫∫
ĥ(δ−1(Sj1 y − Sj2 z))dν(y)dν(z).

For j1, j2 ∈ 
1 with j1 
= j2, by Lemma 5.1, we have

dist(Sj1C, Sj2C) ≥ κ · min{rj1, rj2} > κδ,

which implies that ĥ(δ−1(Sj1 y − Sj2 z)) = 0 for any y, z ∈ C . Recall that spt ν = C .
Hence,

1

Ld(B(0, δ−1))

∫

B(0,δ−1)

∣∣∣∣
∑

j∈
1

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣
2

dx

≤
∑

j1,j2∈
1

pj1 pj2 · 1

Ld(B(0, 1))

∫∫
ĥ(δ−1(Sj1 y − Sj2 z))dν(y)dν(z)

= ĥ(0)

Ld(B(0, 1))

∑

j∈
1

p2j

≤ ĥ(0)

Ld(B(0, 1))
· δρu−ε,

where the last inequality follows from the fact that

∑

j∈
1

p2j ≤
⎛

⎝
∑

j∈
1

p2j r
−u
j

⎞

⎠ δρu ≤ δ−εδρu .

This completes the proof of the inequality (5.5).
To prove the inequality (5.6), let ψ be a non-negative, infinitely differentiable

function on R
d with the following properties: (i) ψ(x) ≥ 1 on B(0, 1); (ii) sptψ ⊂

B(0, 2); (iii) ψ(x) ≤ 3 for all x ∈ R
d . Arguing as in (4.3), we have

1

Ld(B(0, δ−1))

∫

B(0,δ−1)

∣∣∣∣
∑

j∈
2

pje
i〈x,bj 〉̂ν(L jx)

∣∣∣∣
2

dx
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≤ 1

Ld(B(0, δ−1))

∑

j∈
2

p2j

∫
ψ(δx)|̂ν(L jx)|2 dx

+
∣∣∣∣

1

Ld(B(0, δ−1))

∑

j1,j2∈
2
j1 
=j2

pj1 pj2

∫
ψ(δx)ei〈x,bj1−bj2 〉̂ν(L j1x )̂ν(L j2x) dx

∣∣∣∣.

(5.10)

It is easy to see that

1

Ld(B(0, δ−1))

∑

j∈
2

p2j

∫
ψ(δx)|̂ν(L jx)|2 dx

≤ 2d

Ld(B(0, 2δ−1))

∑

j∈
2

p2j

∫

B(0,2δ−1)

3|̂ν(L jx)|2 dx

≤ 3 · 2d
∑

j∈
2

p2j · c(rj2δ−1)−2(�2(ν)−ε)

≤ 3 · 2d−2(�2(ν)−ε)c
∑

j∈
2

p2j r
−u
j · ru−2(�2(ν)−ε)

j · δ2(�2(ν)−ε)

≤ 3 · 2d−2(�2(ν)−ε)c
(
δ2�2(ν)−3ε + δρu−ε

)
,

(5.11)

where the last inequality used the inequality (5.7) and the fact that δρ < rj ≤ 1 for
any j ∈ 
2.

It remains to estimate the second term of the right-hand side of the inequality (5.10).
By our choice ofψ , it is well-known thatψ , and hence ψ̂ , are both Schwartz functions

on R
d . Then there exists a constant Cρ > 0 such that |ψ̂(x)| ≤ Cρ |x |− ρu

1−ρ for all
x ∈ R

d . Arguing as (4.5), we obtain that

∣∣∣∣
1

Ld(B(0, δ−1))

∑

j1,j2∈
2
j1 
=j2

pj1 pj2

∫
ψ(δx)ei〈x,bj1−bj2 〉̂ν(L j1x )̂ν(L j2x) dx

∣∣∣∣

≤ 1

Ld(B(0, 1))

∑

j1,j2∈
2
j1 
=j2

pj1 pj2

∫∫ ∣∣ψ̂(δ−1(Sj1 y − Sj2 z))
∣∣dν(y)dν(z)

≤ 1

Ld(B(0, 1))

∑

j1,j2∈
2
j1 
=j2

pj1 pj2

∫∫
Cρ

∣∣δ−1(Sj1 y − Sj2 z)
∣∣− ρu

1−ρ dν(y)dν(z).

(5.12)

It follows from Lemma 5.1 that for any j1, j2 ∈ 
2 with j1 
= j2,

dist(Sj1C, Sj2C) ≥ κ min{rj1, rj2} ≥ κδρ.
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Hence, we deduce from (5.12) that

∣∣∣∣
1

Ld(B(0, δ−1))

∑

j1,j2∈
2
j1 
=j2

pj1 pj2

∫
ψ(δx)ei〈x,bj1−bj2 〉̂ν(L j1x )̂ν(L j2x) dx

∣∣∣∣

≤ Cρκ
− ρu

1−ρ

Ld(B(0, 1))
· δρu . (5.13)

Combining this with inequalities (5.10) and (5.11), the inequality (5.6) follows. ��
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