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Abstract: The in-homogeneous self-similar measure y is defined by the relation
N
p=Y pipeSit+pv,
i=1

where (p1,...,pn,p) is a probability vector, each S; : R? - R4, i =1, ..., N, is a contraction similarity,
and v is a compactly supported Borel probability measure on R9. In this paper, we study the L4-spectra of
in-homogeneous self-similar measures. We obtain non-trivial lower and upper bounds for the L?-spectra of
an arbitrary in-homogeneous self-similar measure. Moreover, if the IFS satisfies some separation conditions,
the bounds for the L9-spectra can be improved.
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1 Introduction

Throughout this paper, we always assume thatI = {Sq, . .., Sy} is aniterated function system (IFS) of contract-
ing similarities on R4, That is, Sjx = rjAjx + aj, where O < rj < 1, Aj is an orthogonal matrix and a; € R4, for
each 1 <j < N. Itis a fundamental result in fractal geometry that there exists a unique, non-empty compact
set Ky ¢ R9 such that (see [16])
N
Ky = [ JSiKo.
i=1
We call Ky the self-similar set generated by I. In order to understand the fractal structures of self-similar sets,
one studies the so-called self-similar measures. More precisely, given a probability vector p = (p1, ..., Pn),
i.e. p; > 0foreachiand ), p; = 1, there exists a unique Borel probability measure po supported on Ky such
that
N
Mo = Zpillo oSt
i=1
We say that the measure u is the self-similar measure generated by (I, p) in this paper. Self-similar sets and
measures play an important role in the study of fractal geometry, and we refer the reader to [8, 9, 16] and the
references therein for the detailed properties of self-similar sets and measures. Observe that the self-similar
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measure }o can be viewed as the unique solution of the following homogeneous equation:

N
M- pipeS;it=0,

i=1
This viewpoint suggests to us the following natural generalization of self-similar measures.
Definition 1.1. Let I = {Si}f\il be an IFS of similarities, let p = (p1, ..., PN, p) be a probability vector, and

let v be a Borel probability measure on R? with compact support. A Borel probability measure y satisfying
the equation

=

M=) pipeSit =pv (1.1)
i=1
is called the in-homogeneous self-similar measure generated by (I, p, v).

In-homogeneous self-similar sets and measures were first introduced and studied by Barnsley and Demko
in [4], where they considered some examples of in-homogeneous self-similar measures. In [1-3, 13, 24],
in-homogeneous self-similar measures are also called orbital measures and the in-homogeneous term v is
called the condensation measure. The existence and uniqueness of such measures is well known; see [18].
Furthermore, it has been shown that the support of the in-homogeneous self-similar measure u is equal to
the unique non-empty compact set K¢, called the in-homogeneous self-similar set, such that

N
K¢ = USiKC ucC,
i=1
where C is the compact support of the measure v. In [3], Barnsley defined the orbital set by the union of
the condensation set C, with all images of C under compositions of maps in L. It is well known that the
in-homogeneous self-similar set K is the closure of the orbital set, and it turns out that the orbital set plays
an important role in the structure of the in-homogeneous self-similar set.

In recent years, multifractal theory has aroused widespread concern among theoretical physicists and
mathematicians. Rényi introduced the Rényi entropies in 1960 in [20-22]. In [14], Hentschel and Procaccia
defined the generalized Rényi dimensions and used integrals in an attempt to characterize the class of mean
value functions which induce additive entropy functions. The popularity of Rényi dimensions is basically
the relation between Rényi dimensions and the multifractal spectra. It was proved by Horbacz, Myjak and
Szarek [15] that the multifractal spectrum and the Rényi dimension can be derived from each other. Moreover,
the L9-spectrum is equal to the Rényi dimension with a constant multiple difference when q is finite, so it
makes sense for us to study the L?-spectrum of the in-homogeneous self-similar measure. Now, we recall the
notion of L9-spectrum of the Borel probability measure y on R for g € R.

Definition 1.2. For a Borel probability measure y on R? and q € R, the lower L?-spectrum Zu(q) and the upper
Li-spectrum T, (q) of p are defined as follows:

log |, H(BO, N)T dp(x)

7,(q) = lim inf “logr , (1.2)
log u(B(x, 1)t du(x)
Tu(g) = limsup Lpt“ 1 , (1.3)
r—0 ~logr

where spt u denotes the support of u and B(x, r) denotes the open ball of radius r centered at x.

During the past twenty years, many papers focused on the L9-spectra of the homogeneous self-similar
measures (see, e.g., [5-7, 10-12]). In particular, for an IFSI = {Si}ﬁ , of similarities with contraction ratios
ri€(0,1) fori=1,...,N and probability vector p = (r{, ..., r3,), Shmerkin proved that for any g > O the
L9-spectrum of the homogeneous self-similar measure y is affine in [23], that is,

Tu(q) = s(1-q).

However, the results are limited in the in-homogeneous case. An important result on the L9-spectrum of the
in-homogeneous self-similar measures is the following theorem obtained by Olsen and Snigireva in [19].
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Theorem 1.3 ([19, Theorem 2.1]). Assume that the sets (S1K¢, ..., SnyK¢, C) are pairwise disjoint.
(i) Forall q € R, we have
Tyu(q) < max{T,(q), B(q)}.

(ii) Forall q € R, we have
min{z,(q), B(q)} < 7,(q).

(iii) For all q > 1, we have
max{z,(q), B(@)} < 7,(a),

max{7,(q), B(q)} < Tu(q).

Moreover, in [19], Olsen and Snigireva introduced the in-homogeneous open set condition (I0SC) by assuming
that there exists a non-empty and bounded open set U such that the following conditions are satisfied:

(C1) S;Uc Uforalli.

(C2) S;UncC° =oforalli.

(C3) SiUnS;U=0foralli+j.

Here A° denotes the interior of a set A ¢ R?. Then they posed the following questions.

Question 1.4 ([19]). Are the results above true if the IOSC is satisfied?

Motivated by the above question, we study the L?-spectra of in-homogeneous self-similar measures in this
paper. Our main results are Theorems 2.7-2.12. Sections 3 and 4 are devoted to presenting the proofs.

2 Preliminaries and main results

2.1 Basic definitions and notations

LetI = {Sq, ..., Sy} beaniterated function system of contracting similarities on R<. Suppose S;x = r;A;x + a;,
where r; € (0,1), a; € R? and A; is an orthogonal matrix for each 1 <i<N. Let p = (p1,...,pn,p) be
a probability vector with p > 0 and let v be a condensation measure supported on a compact set C. We
denote by u the in-homogeneous self-similar measure generated by (I, p, v), and by K¢ the corresponding
in-homogeneous self-similar set. Let £ = {1, ..., N} be the set of alphabets. Denote the set of all finite strings
with entries in £ by

*={i=i;--ip:neN,ix=1,...,N},

and the set of all strings with length n by
={i=iy--ip:ix=1,...,N}L

In particular, write X° = {w}, where w is the empty word and the map S,, is taken to be the identity. For a finite
stringi =iy ...1i,, denote the length of i by |i|, i.e. |i| = n, the restriction of i to its first entry by i|; = i1, and the
restriction of i toits first n — 1 entriesbyi- = (i1, ..., in-1). Wewrite S; = S;; o --- o S;,. Then Sj is a contraction
similarity on R? and has the form

Six = ridix + aj,
where ri =1y, --- 11, € (0, 1), Aj = A;, --- A;, is an orthogonal matrix and aj is a vector in RA. Similarly, we

define pj = p;, -+ pi,.
For any n € N, it follows easily from (1.1) that

=) piueS;t+p Yy piveS;t. 2.1)
lil=n lil<n

It is obvious to see that
pY piveS;t<u<(1-p)"+p ) piveS;t.

lil<n lil<n
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Letting n tend to infinity, we have

u=py piveS;. (2.2)
ieX*

We recall that an IFS I = {Si}fi | satisfies the open set condition (OSC) if there exists a non-empty open
set U such that | J; S;U < U and S;U N S;U = 0 for i + j. The OSC is fundamental in the investigation of the
homogeneous case. In order to study the L7-spectra of in-homogeneous self-similar measures, we need to
adapt the OSC to the in-homogeneous case as follows.

Definition 2.1. An IFSI= {Si}fi 1> together with a condensation set C, satisfies the condensation open set

condition (COSC) if I satisfies the OSC and the open set U can be chosen such that C ¢ U \ (| ; S;0).

It is of interest to study the L2-spectra of the in-homogeneous self-similar measure satisfying the COSC. More-
over, we consider a more general situation by assuming that there exists a non-empty and bounded open set U
such that the following conditions are satisfied:

(S1) CccU.

(S2) S;U c Uforalli.

(S3) SiUnS;U=0foralli#j.

(S4) v(oU) = v(S;U) = 0 for all i.

Here oU is the boundary of U, i.e. 0U = U \ U.

Remark 2.2. The in-homogeneous self-similar set under the COSC satisfies conditions (S1)—(S4).

Similar to the similarity dimension, we denote by 5(q) the g-th dimension of u, defined by the solution of
the following equation:

Zp?r?(q) =1. (2.3)
i

It is clear that the function B(q) is well defined, that is, for every g € R we can find a unique (g) € R such
that (2.3) holds. Moreover, it is easy to prove that B(gq) is a convex function, and it is strictly decreasing with q.
In particular, we note that (1) < 0, implying that f(q) < O forall g > 1.

Definition 2.3. The Assouad dimension of a measure v is defined by

v(B(x, R)) R\s
v(B(x, 1)) = C( r)

forall 0 < r < R < diam(sptv) and x € spt v} (2.4)

dimy v = inf {s > 0 : there exists C > 0 such that

and, provided diam(spt v) > 0, the lower dimension of v is defined by

v(B(x, R)) R\s
VB - C(7)

forall0 < r < R < diam(sptv) and x € sptv}, (2.5)

dimy v = sup{s > 0 : there exists C > 0 such that

and otherwise it is 0. We adopt the convention that inf # = +oo.
Remark 2.4. The restriction R < diam(spt v) is not required in the definition of dima v.

The Assouad and lower dimensions of a measure were introduced formally in Kdenmaéki, Lehrback and
Vuorinen [17]. When they were first introduced, the Assouad and lower dimensions of measures were referred
to as the upper and lower regularity dimensions. Theses dimensions describe the optimal global control on
the relative measure of concentric balls.

Definition 2.5. Let v be a probability measure on R?. We define the lower co-th Rényi dimension of v by

log SUPyesptv V(B(X, 1))
logr

D, (c0) = lirrn_)ionf
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Fix a positive integer n. We set

SiKc, il =n,
M{ =4SiC, O<lil<n,
C, i=w,

forany i € |J}_, £*. Furthermore, we set
n
An={ae Jzts M} +0}.
k=0 ieA
It is clear that {i} € A, foralli e UZZO ¥k and thus A, is non-empty. For any A € A, we define a function
Dp:R— IRby
Da(s)= Y piri+p Y. pirs-
ieA ieA
lil=n lil<n

Since the function @, (s) is continuous and strictly decreasing with
lim ®a(s) =+oo and lim D,(s) =0,
S——00 S—+00
there exists a unique s(A) € R such that

1=®a(s(B) = Y piry V+p Y piry -

ieA ieA
lil=n lil<n
Let
Sp = sup s(A).
NeA,

Remark 2.6. s, is monotonically increasing with respect to n.

2.2 IFS without any separation conditions
First, we significantly generalize the result in [19]. Our results bound the upper and lower L4-spectra of the
in-homogeneous self-similar measures without any separation conditions.

Theorem 2.7. Let u be the in-homogeneous self-similar measure generated by (I, p, v).
(i) Forallq > 1,we have

Tu(q) = max{B(q), Tv(q)},

7,(q) > max{f(q), 7,(9)}.

(ii) Forall q < 1, we have
Tu(q) < max{B(q), Tv(@)},
7,(q) < max{B(q), 7,(q), 7,(q) + B(@) - (1 - q) dimp v}.
We next provide a non-trivial upper bound for g > 1 and a lower bound for g < 1.
Theorem 2.8. Suppose u is the in-homogeneous self-similar measure generated by (I, p, v). Let n be the smallest

integer satisfying
() M} =0.

lil<n
(i) Forallq = 1, we have
7,(@) < Tu(q) < max{(g - 1)sn, (1-q)D,(c0)}.
(ii) Forall q < 1, we have
Tu(q) 2 7,(q) > max{(q - 1)sn, (1 -q)D,(c0)}.
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2.3 IFS with separation conditions
In this subsection, we consider the LY spectra of the in-homogeneous self-similar measure generated by IFS
with some separation conditions.
Theorem 2.9. Let u be the in-homogeneous self-similar measure generated by (1, p, v). Assume that
N
U SiKcnC=0.
i=1

Then, forall q € R,
7,(9) 27,(9), Tu(q) >Tu(q).

Theorem 2.10. Assume that (S1)—(S4) are satisfied. Then, forall q < 1,
Tu(q) = T,(q) = B(q).
From Theorems 2.7, 2.9 and 2.10, it is easy to obtain the following theorem.
Theorem 2.11. Assume that the COSC is satisfied. Then, for all g < 1,
7,(q) = max{7,(q), B(q)},
max{z,(q), B(@)} < 7,(q) < max{B(q), 7,(q), 7,(d) +B(q) ~ (1 - q) dim; v}.

Finally, Our task now is to estimate the upper and lower L7-spectra of the in-homogeneous self-similar
measure for all g > 1.

Theorem 2.12. Assume that the COSC is satisfied. Then, forany q > 1,

Tu(q) = max{7y(q), B(q)},
max{z,(q), B(@)} < T,(q) < max{B(q), 7,(), T,(q) + B(q) - (1 - q) dimyu v}.

3 IFS without any separation conditions

In this section, we study the L?-spectra of the in-homogeneous self-similar measures generated by an IFS
without any separation conditions. The main goal is to prove Theorems 2.7 and 2.8. First, we will establish
several lemmas for the proof of our main results. We denote the diameter of a bounded subset A of R? by
diam A. For any r € (0, 1], we define a W’Kc-stopping by

Ii(r)= {1 ex*:n< dlamKe < r,f} (3.1)
and set
L =fies :n> ;} 3.2)
diam K¢
Moreover, we write .
1"3(r)={1e2 1> diamC}' (3.3)

Obviously, I'3(r) is a subset of I';(r). According to the iterative formula (1.1), we have the following result.

Lemma 3.1. For anyr € (0, diam K¢), we have

p= Y pipeSit+p Y pveS;.
iel(r) iel,(r)

Denote the minimum and the maximum of {r;}; by rmin and rmax, respectively. For convenience, in this paper,

we write diam K-8
Crin = min{(diam Ko)P@ | (diam C)P@, (&)ﬂ 1 }

T'min
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and
i (q)
Conax = max{(diam Ko)P@, (diam C)F@, (M)ﬁ 1 }

T'min

Lemma 3.2. Foranyr € (0, diam K¢) and q € R, we have

Cminr_ﬂ(q) < Z p? < Cmaxr_ﬂ(q).

ieF1 (r)

Proof. Fix r € (0, diam K¢) and g € R. According to the definition of I';(r) in (3.1), it follows that for any
iel(n),

< —— <1< .
diam K¢ Tmin

Clearly,
T ’min r

. <1< — .
diamKc; '~ diamKc

By repeated application of equation (2.3), we obtain

> pin? =1

i€l (r)
Thus,
q q B _-B) I Tmin \F@ r B ( q,8@
Zp,:Zp.r{; T <maxi( ——— N\ : Zp)
iel,(r) ' il (r) v {<d1amKC) (dlach) } i€l (r) H
< Crnax? P9,
Similarly, we can deduce the inequality on the other side. O

Lemma 3.3. Given an € > 0, there exists ro € (0, 1) such that
z p?rf(q) < z p;zrf(tv <€
iel3(r) ielz ()
forany O <r <ro.
Proof. The first inequality is trivial since I';(r) is a subset of I';(r). We will show the second inequality in the
following. Given an € > 0, it is easy to see that there exists ry € (0, 1) such that
ko
10g rmax 2r€
forany O < r < ro. Forany r € (0, ro) and i € T',(r), by the definition of I',(r) in (3.2), we have

[i]
Tmax = T

max{l,

L
'” diam K¢
that is,
r
. log diam K¢ 1
li| < ——damke o —
108 max 2r€
Hence, we conclude that
q 8@ q B
Y P ne < Y b "

. !
el () lil< 55

=Y Yrin?

1 li|l=k
k< 5 1l

-y (;p?rfup)k

k<L
T
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Recall that the lower LY spectrum and the upper L?-spectrum of a measure v are respectively defined by
log jsptv v(B(x, )4t dv(x)
—logr

7,(q) = H?L iglf

and
log fs o V(BOG 1) dv(x)
Ty(q) = lim sup L .

r—0 —logr

For simplicity of presentation, we write

I(q. 1) = j V(B(x, )i~ dv(x)

sptv

forany g € Randr > 0.

Lemma 3.4. Let v be a probability measure supported on a compact set C.
(i) Foranyq = 1, we have

(1-¢g)dimyv<7,(9) <Ty(q) < (1-q)dimyv.
(ii) For any q < 1, we have

(1-q)dimyv<7,(g) <Tv(q) < (1-g)dimygv.

Proof. We only prove (a). The proof of (b) is similar and is omitted. Fix g > 1. We begin by proving the
first inequality. Let t > dimy v. By the definition of dim4 v in (2.4), there exists ¢; > O such that for any
r € (0,diamC) and x € C,
V(B(x, 1)) > c11'.
Therefore,
Lg, 1 = jv(B(x, M1 dv(x) > 01D,
c

It follows that 7,(q) > t(1 — q). Letting t — dimy4 v yields the desired inequality.

The middle inequality is trivial, so it remains to prove the final inequality. Let s < dim, v. By definition of
dim; v in (2.5), there exists ¢, > 0 such that for any r € (0, diam C) and x € C,

v(B(x, 1)) < car’.

Therefore, we deduce that
I(qg, 1) = Jv(B(x, NIt dv(x) < I,
c
It is easy to see that 7,(q) < s(1 — q). Letting s — dim_ v gives the result. O

Proof of Theorem 2.7. Consider O < r < diam K. It follows from Lemma 3.1 that for any g € R,

L(q.7) = j u(Bx, )4 dp(x)

K¢
= Y pi J' uBOGN) T dueS;'tx+p Y pi j H(BO, M) dv e S x. (3.4)
i€l (r) Si(Ke) iel,(r) Si(C)

By the same token, for any x € K¢ and r > 0, we have

UBLN) = Y pipeStBOLM)+p Y piveS;i(B(x, 1)
iel'1(r) i€l ()

= z piy<B<Si_1x,rLi))+p Z PiV(B(Si_lX’r_’;))'

iel1(r) iel>(n)
This implies that

piu(B(Si‘lx, rL)) for x € SiKc¢, i € T1(r),
H(B(x, 1)) = ' (3.5)

ppiv(B(Sx, 7)) forx € SiC, i€ Ta(n.
1
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Consider g > 1. If we plug (3.5) back into (3.4), then we derive

wanz ¥ ol [ u(B(s D) dwesitxepnt ¥ pl [ v(B(sit )" dves;s

i€l (r) Si(Ke) el (r) Si(C)
5 5 [lofe ) st 3 0t [l D) o
iel1(r) Kc 1 ieh,(n ¢ 1

> pin(e)+p? Y (e )

iel1(r) 1 ielL(r)

It is clear that ,11 > diam K¢ for any i € I'1(r). Then, for any x € K¢, we have
r
Kc < B(x, F)’

which infers that u(B(x, £ r L)) = 1. Therefore, we conclude that for any i € 'y (r),

Iy(q, Y_l) = Jy(B(x, r—:))q_ du(x) = 1.

Kc
Consequently, forany g > 1,
Li(q,1) = z p?+pq Z pIIV(q, ) (3.6)
i€l () iel,(r)

Proceeding as in the proof for g > 1, it is easy to check that for any g < 1 we have
L@ns Y pi+p? Y piL(a - ). (.7)
iel'((r) iel,(r)
(a) Consider g > 1. On one hand, it follows that
r .
Lign= Y pi+p? Y piL(q, ;) (using (3.6))

il (1) i€l (n) !
q
Z b
i€l (r)
> Crint P@ (using Lemma 3.2).
By the definition of zy(q) in (1.2), we derive that Iy(q) > (q). On the other hand, it can easily be seen that

I(q, r) = pl,(q, r), which leads to the conclusion that Iy(q) > 1,(q) and T,(q) = T,(q). We have thus proved
that

7,(q) 2 max{B(q), 7,(q)},
Tu(q) = max{B(q), Tv(q)}.

(b) Consider g < 1. It follows from the definition of 7, (q) in (1.3) that there exists a positive constant c;
such that for any i € I',(r), i.e. r—’l < diam K¢, we have

Iv(q, I‘Ll) < C1(r ) (Tv(CI)+€) (3.8)

1

Thanks to Lemma 3.3, given € > 0, there exists rg € (0, 1) such that for all r € (0, o) we have
Z p?rf(q) <r€
iel,(r)
Combining (3.7), (3.8) and Lemma 3.2, we get
(T (g)+e)
Lign< Y pl+ap’ ) pf(r )
iely(r) iel,(r) 1

< Cmaxr B(q) + Clpq Z pq ‘l[‘/ (@)+e _(Tv(q)+€)
iel,(r)
If7,(q) = B(q), then

qu Tv(q)+e < qurﬂ(q)
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Evidently, the series
Z ( qu Tv(q)+e)
is convergent, and we denote the limit by c,. Consequently, we derive that
Ii(g, 1) < Cmaxr—ﬂ(q) + ClCqur—(?v(qu) < (Cax + €1 Czpq)r—(?v(q)%)_
Hence, we are led to 7,,(q) < Ty(q) + €. Letting € — 0 yields that

Tu(q) < Tv(q) = max{T,(q), B(q)}.

If T,(q) < B(q), since € can be chosen arbitrarily small, we can assume that 7,(q) + € < B(q). It follows from
(3.2), (3.7), (3.8) and Lemma 3.3 that

Iy(q, r) < Cmaxr—/;(q) +C1pq Z piqrf(q)rirv(q)+e—ﬁ(q)r-(?v(q)+e)
il ()
r )?v(q)+€’ﬁ(q)r_(?v(q)_'_ze-)

< Coax? P@ + C“’q(m

< Cor_(ﬁ(q)”),

where
Co = Cmax + c1p?(diam Kc)ﬁ('l)*(fv(q)%).

Thus, we deduce 7,,(q) < B(q) + €, and letting € — 0 yields that
Tu(q) < B(q) = max{T,(q), B(q)}.
It remains to prove that
7,(q) < max{B(q), 7,(q), 7,(q) + B(q) - (1 - q) dim v}.

Fix € > 0. According to Lemma 3.3, there exists rg € (0, 1) such that for any r € (0, ro),

Z p?riﬁ(q)<r—e

iel5(r)

By the definition of 7,,(¢) in (1.2), there exists a sequence {ry,}m v O such that

(g, rm) < 7. (T, (q)ve) (3.9)
We assume m large enough such that 0 < r,,;, < rg. Applying Lemma 3.2 to (3.7), we have
q, .4 q 'm
Lig,rm)< Y p{+p? ) p Iv(q, —_)
i€T1(rm) i€l (rm) I
r
< Cmaxm S +pf Z Iv(q: T ) +p? z P?Iv(q, _m) (3.10)
iel3(rm) i€l (rm)\I3(rm) 1
Foranyi € I'y(ry) \ I's(rn), it follows that
T'm 'm
— i< —/—, 11
diam K¢ < diam C (3.11)
that is, .
diam C < r_m < diam K¢. (3.12)
i
From (3.11), we obtain
-B(q) I'm -Ba) 'm \B@ -B(q)
s max{(diach) (Gamc) 1= Comrn - (3-13)
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Moreover, according to (3.12), it is easy to check that
"'my Tm\\4-1 B
I,(q, r—i) = JV(B(X, "_1)) dv(x) = 1. (3.14)
C

Based on the above argument, we observe that

by Iv(q, - ) = Z p{ (using (3.14))
i€l (rm)\I3(rm) i i€l (rm)\I3(rm)
_ q ﬁ(q) -B(q)
- Z b n
i€l (rm)\I3(rm)
< Crmaxl'mt @ ( > p?rf(q)) (using (3.13))
i€l (rm)
< Cmax"m ~(B@)+e) (using Lemma 3.3). (3.15)

For any i € I'3(rp), it follows from (3.3) that ’r—:" < diam C. Due to the definition of dim; v in (2.5), for any
s < dimp v, there exists c3 > 0 such that for any i € I';(r;;) and x € C,

v(B(x, r_m)) 5 VB Tm)

) S
ri r

Clearly,
I(g, rr_r:) - IV(B(X, rr—”;))q_1 dv(x)
C

< IR0 [v(BOn T dvix)
C

= C3 - iS(l q)Iv(q, m)
< ATy DD (ysing (3.9)). (3.16)

If (1 - g)dim; v > B(q), since s can be chosen arbitrarily closed to dim; v, we can assume s(1 - q) > 5(q).
Obviously,
qu s(1-q) < zp?rf?(q) _
i

Write

c4 = Z (zpq Sa- q)) z pq s(1-q) (3.17)

k=0 i ieX*
It follows from (3.16) and (3.17) that

Y pin(em)s Y pled ity o0

iels5(rm) ni iels5(rm)
1 (@, (@)+e) 1-q)
<t Y pnt?)
iel'3(rm)
< cqcd” 1r;n( ave) (3.18)
Using (3.15) and (3.18) in (3.10), we have
I,(q, rm) < Cmax"m J@ + C4Cg_1pqr A0+ + CrnaxP T b +€)

This implies that
7,(9) < max{z,(q) + €, B(q) + €}.
Letting € — 0 yields that
7,(q) < max{f(q), 7,(9)}.
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We have
7,(@) <max{f(q), 7,(@), 7,(q) - (1 - g)dim v + B(q)}.

If (1 - g)dim; v < (q), then for any s < dim; v we have s(1 — q) < B(g). It follows that
q.s(1-q) q B(q) s(1-q)-B(q)
Z bith = Z b ’f I

iels(rm) iels(rm)

r s(1-q)-B(q) (@
= (amc) (X o)

iels(rm)

< (diam €)~S1-@+B@  SU-D-B@)=¢ (im0 emma 3.3).

Therefore, we conclude that

- -1 (T, (@+e) 1- -

mﬁ(q) + Cg Pirm ’ ( z piqriS( q)) + Cmaqurm(ﬁ(q)+€)
iels(rm)

- - : _s(1-q),S(1-0)-B(@)- 2 _
< Cmaxrmﬁ(q) + Cg 1p‘1(d1am C)ﬁ(q) s(1 q)r;(l D-B(@)—(T,(9)+2€) N Cmaqurm(ﬁ(q)+€).

I,(q, rm) < Ciax?

This infers that
7,(q) < max{B(q) + €, T,(q) + 2 - s(1 - q) + B(q)}-

Evidently, we derive that
7,(q) < max{f(q), 7,(9), 7,(q) - (1 - @) dim_ v + B()}.
It is now obvious that the theorem holds. O

Now, we show Theorem 2.8. Fix a positive integer n. Recall that for any i € [ J;_, >k we write

SiKc, il =n,
M =4SiC, O<lil<n,
C, i=w.

Set .
An:{Ag Uz";ﬂMyﬂ)}.
k=0 ieA
For any A € A,, we define
Da(s)= Y pir+p Y pir,

ieA,lil=n ieA,lil<n

and we write the unique solution of ®5(s) = 1 as s(A). Let

Sp = sup s(A).
AeA,

Denote the distance between two points x, y € R? by |x — y|. Write the distance between a point x € R?
and a compact set A ¢ R? as
dist(x, A) = inf{|x - y| : y € A},

and the distance between two compact sets 4, B < R? as
dist(A4, B) =inf{|x —y|: x € A, y € B}.
Moreover, we define p, : K¢ — R by

pn(x)=sup min dist(x, M)
AeA, 1€Up- ZN\A

and let
6n = inf pp(x).
xeK¢
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Lemma 3.5. Assume that

() M} =0.

lil<n

Then 6, > 0.

Proof. We first show that p,(x) > O for all x € K¢. Set
n
Bo={ieJztxem}.
k=0

Since x € (ep, Mj', we have Ag € A,. It follows from

(1M =0
lil<n

that

n
U K\ Ag # 0.
k=0

Moreover, for any i € UZ:O 2K\ Ao, it is clear that x ¢ Mi". Thus,

pn(x) > min dist(x, M]) > 0.
iU, =k\

€Uk=0 0
We claim that p,(x) is continuous. It suffices to show that for any x, y € R4,
[on(X) = pn(Y)| < Ix = yl.
For any A € Ay, there exists jo € Ji_o ¥k \ A such that

dist(y, Mi") = min dist(y, Mi") < pn(y).
" jelio ZA

Clearly,
min  dist(x, M{") < dist(x, M").
i, Th\A Jo
Moreover, according to the compactness of M}, it follows that there exist xo, yo € M;' such that
dist(x, M") = |x - xo|
and
dist(y, M) = ly - yol.

Obviously,
dist(x, M{") — dist(y, M{') = [x — xo| = ly = yol < [x - yl.

Combining (3.20)-(3.22) gives that
min dist(x, M{') - pn(y) < min dist(x, Mj') - min dist(y, M")
iU, ThA iU, TH\A jelUl, ZH\A J
< dist(x, M].’;) — dist(y, Mi’;)
< |x-yl.

Taking the supremum over all A € A, leads to

Pn(X) = pn(y) < Ix -yl

(3.19)

(3.20)

(3.21)

(3.22)

Owing to the arbitrariness of x and y, we therefore conclude (3.19) as claimed. Finally, based on the above

argument, there exists xo € K¢ such that
6n = inf pp(x) = pn(xp) > 0.
xeK¢

This completes the proof.
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Let v be a probability measure. For any r > 0, we set

I,(r) = sup v(B(x,r))

xesptv

and
I (r) = sup v(B(x, 1)).

xeR4

Recall that the lower co-th Rényi dimension of v is defined by

e log Ly(1)
QV(OO) = lllrll)lglf W’

Lemma 3.6. Let the setting and notation be as above. The following statements hold:
(i) Foranyr > 0, we have
r
IB‘d(E) <L <I¥().

(ii) We have the following equivalent definition:
. logI®(r)
D, (00) = llglglf ﬁ.

Proof. (a) For any r > 0, without loss of generality, we assume that IIVRd(§) > 0. For any x € RY with

r
v(B(x, 5)) >0,
there exists xo € sptv n B(x, %) such that

v(B(x, %)) < V(B(xg, 1)) < I,(r).

Thus, we conclude that IB‘d (%) < I(r). Moreovet, it is well known that I (r) < I,]}‘d (n).
(b) It is easy to see that
logIR'(r) logl,(r)  logI®'(%)
logr = logr = log £ +log2’

Letting r — 0, we obtain the desired result. O
Lemma 3.7. Let n be the smallest integer satisfying
(] M} =0.
lil<n
Forany 0 < r < 6,, we have
(T R
b < max{ 3 o () +p 3wl (7))

1 ieA 1
lil=n lil<n

Proof. Consider x € K¢. Denote the cardinality of a set A by #A. Since #A, is finite, we conclude that there
exists Ay € A, such that
pn(x) = min dist(x, Mj).
j

€Uk=o ZF\A
It is easy to check that for any 0 < r < 8, < pn(x),
{i: B(x,r)n M} # 0} € Ay. (3.23)
Indeed, forany i € [Ji_, £%\ Ay,

dist(x, M") > mink dist(x, Mi") =pn(x) =6, >,
jeUr \Ax

€Uk=0
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which infers that B(x, r) n Mi’l = @. Clearly, for any x € K¢, we derive that
MBOGT) = Y pipeS;HBXGM)+p Y pive S{H(B(x, 1) (using (2.1))

lil=n lil<n

= ) pine ST BOGM) +p Y piveS; (B, 1)  (using (3.23))

ieA, ieA,
lij=n lil<n
- S oua(sx 1)) +p 3 po(n(si'x 7))
ieAy ieAy !
lij=n lil<n
< Z plly(r )+p Z pJ]Rd(r.)
iel, 1 i€, !
lil=n lil<n
< ﬁ%{ ié Pily (rl) tr 1;; plI]Rd(rl)}‘
lil=n lil<n

Taking the supremum over all x € K¢ implies that

e (-~
My (1) sg;%{l% pl[u(ri)erlileZA pil, (ri)}
il=n 1|<n

as desired. O

Proof of Theorem 2.8. Since n is the smallest integer such that
(M} =0,
lil<n

we have 6, > 0 from Lemma 3.5. Let t > max{sn, -D, (co)}. It follows from Lemma 3.6 that there exists c; > 0

such that forany 0 < r < §, and [i| < n,i.e. 0 < - < &,/rp, , we have
Ri( T r\—t
I (r—i)scl(r—i) : (3.24)

It follows that forany O < r < 65,

Li(n < max{ > pil, (r )+p > X (r )} (using Lemma 3.7)

An b iea 1 ieA

lil=n lil<n
t .
< EE}{X{ z plly( )+c1p Z pirir } (using (3.24)). (3.25)
icA ieA
lil=n lil<n
Let
I,(6n)
mm{(rmm(‘in)—f, 7'}

Thus, forany r € [r". 6y, 6,], we have

min
Li(r) < Ii(6y) < cor™.

Write co = max{ci, c,}. We assume that for some k € N the inequality

Ly(r) < cor™ (3.26)

holds forany r € [r", rk &,, 6,]. In particular, it obviously holds when k = 0. We now show that (3.26) holds
for any

re [rmmrg;xl)"fin, 8al.
For simplicity, we only need to verify the case of

(k+1)n n
re [rmmrmax 6”’ min max6n]’

that is, for any i € ",

r
n kn
- € [ "max0n> Onl.
1
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It follows that
t—t :
Iy(r) < in%{ Z plly( )+ Cop Z pir;r } (using (3.25))
ieA ieA
lil=n lil<n
<max{ ch ( )_t+cpzp.r?r‘t}
max iCo o Z il
|l| n lil<n
< cor” m%{ Y piri+p Y plr}
ieA ieA
lil=n lil<n

Since t > s,, it is obvious to see that for any A € Ay,
Dp(t) < Dalsp) < Da(s(D)) = 1.

Evidently,

?éix{ Y pirf+p Zplr} <1
ieA ieA
lil=n lil<n

Thus, we conclude that (3.26) holds for all

k+1)n n kn
re [rmmrmax On, 1 T in TmaxOn]

By the inductive hypothesis, we have that (3.26) holds for all r € (0, &,).
Consequently, forany g > 1 and r € (0, §,),

@) = [ (B )T o < (! < cf e,
Ke

which leads to T, (q) < t(q - 1). Letting t — max({sy,, -D, (co)} gives the result that
7,(@) < Tu(q) < max{(q - 1)sn, (1 - g)D, (c0)}.
A similar argument deduces that for any g < 1,

Tu(q) 2 7,,(q) 2 max{(q - 1)sn, (1 - q)D, (c0)}. O

4 IFS with some separation conditions

In this section, we study the L?-spectra of the in-homogeneous self-similar measures generated by an IFS
without some separation conditions. From Theorems 2.7, 2.9 and 2.10, it is easy to obtain Theorem 2.11.
The main goal is to prove Theorems 2.9, 2.10 and 2.12.

Proof of Theorem 2.9. As C n S;K¢ = 0 for all i, we have
mindist(C, SiK¢) > 0.
1

We set r1 = min; dist(C, S;K¢) and consider O < r < r1. For any x € C, it is apparent that B(x, r) n S;K¢ = 0 for
any i € X, which implies that y o Si‘l(B(x, r)) = 0 for any i € X. Therefore, we have

L(q.7) = j U(B(x, )7 dp(x)

Ke

>p j M(B(x, )4t dv(x)
c

=p? J V(B(x, r)? ! dv(x)

C
=pil(q,r).



DE GRUYTER S. Zhang, B. Gao and Y. Xiao, L9 spectra of in-homogeneous self-similar measures =— 1399

It turns out that

7,(@) 27,(9), Tu(q) >Tv(q)
forall g € R. O
In the following, we assume that the IFS I = {Si}?’
Theorem 2.10. We need some lemmas.

, satisfies (51)—(S4). Our goal in this section is to prove

Lemma 4.1. Assume that the IFS1 = {Si}ﬁ | satisfies (S1)—(S4). Then the following assertions hold:
(i) u(o U)_: 0.
(i) KccU.
(iii) u(SiU) = pj foranyie Z*.
Proof. (a) Consideri € X*. It follows from (S1) and (S2) that
CcUcS;'U.

Then
CnS;'(oU) c Cnol.

Using (S4), we derive that ve S; 1(oU) = 0. By the iterative formula (1.1), we derive that

pOU) = Y pipeS;H©@U) +p Y piveS;'OU) < ) pi=(1-p)"
lil=n lilkn lil=n
for any n € IN. Letting n — oo gives u(oU) = 0.
(b) It is well known that
Kc = | Si(0).

iex*

According to (S1) and (S2), for any i € £*, we have
SiCcSiUcU.

Evidently, we deduce that K¢ < U.

(c) Without loss of generality, we assume that [i| = n. Consider j # i with |j| = n. Owing to (S2) and (S3),
we observe that

SUnSiU = 0.
It follows from (a) and (b) that p o Si_ 1(S;U) = 0. Moreover, we consider ljl < n. If j is not a prefix of i, it is
apparent to see that v o Sj‘ L(SiU) = 0. If j is a prefix of i, then there exists i € ¥ such that S]T L(siU) ¢ Si, U.
Clearly, it follows from (S4) that
Ve S7H(SiU) < v(S;,U) = 0.

Due to the iterative formula (1.1) and the above discussion, we can conclude that
WS = Y pipeS;HSIU) +p Y pyve S;HSiU) = pip S (SiU) = pi.
lil=n ljl<n
The proof is finished. O

Forany O < k < 1 and r > 0, we write
r
Qik,r)=1ieZ :ri<s ——<n
1k, 1) {1e i rminkdlamU<rl’}
and .
Qy(k,r)y=1ieX" :ri> ———1.
20k, 1) {le > Tmink diam U}
Lemma 4.2. ForanyO < k < 1,r > 0and q € R, we have

z p? > Ar‘ﬁ(q) ,
ieQq(k,r)
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where
A = min{(k diam U) @, (rpink diam U) @},

Proof. The proof of this result is quite similar to that given earlier in Lemma 3.1, and so it is omitted. O
Proof of Theorem 2.10. Given O < k < 1, we set
kU = {x € U : dist(x, oU) > kdiam U}.

According to Lemma 4.1, we can easily find that u(U) = 1. Consequently, there exists O < ko < 1 such that

1
o) = 5. (4.1)
Considerr > 0and q < 1. Forany i € Q;(ko, r) and x € Sij(K¢ n koU), it is easy to check that
dist(x, 0SjU) > riko diam U > r.

This infers that
B(x, r) ¢ S;U.

Consequently, for any i € Q4 (ko, r) and x € S;j(K¢ N koU), we derive that
UB(x, r))I71 > u(S;U)at > pf_l (using Lemma 4.1). (4.2)

Clearly,

Lig, > Y pi|u@BxmTdueS (0
i€eQq(ko,r) Ke

> ) b U(B(x, 1) dpo S71(x)
i€0:(ko") gk hkoD)
> z piuKc nkol) (using (4.2))
i€Qq (ko,r)
1 .
> = Z p;] (using (4.1))
ite(ko,r)
2 %fﬁ(q) (using Lemma 4.2).

This leads to the desired result that

Tu(q) 2 7,(q) 2 B(q)
forallg < 1. O
In the final part of this section, we will prove Theorem 2.12. Firstly, we recall the upper and lower pack-

ing Rényi dimensions. We call a finite or countable family {B(xk, r)}x of balls an r-packing of a set A if
B(xk,r) N B(xij,r) =@ foralli# kand xy € A for all k. For any g € Rand r > 0, we set

My(q, r) = sup { Z,u(B(xk, )4 : {B(xk, 1)} is an r-packing of spty}.
k

Define respectively the g-th lower packing Rényi dimension I‘Z (q) and the g-th upper packing Rényi dimen-
sion T},(q) of u by

.. logMy(q,r)
Py u
Tu(9) = hrrrl,lonf —logr
and log M, (q, )
— . 0g q, 1
72(q) = limsup ——2— ",
w(@ r—0 P logr
Recall that

L(q.7) = j U(Bx, )7 dp().
sptu
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Now, we study the relation between I, (g, r) and M(q, r), and we prove that the g-th packing Rényi
dimensions and L4-spectra of u are equivalent when g > 1.

Lemma 4.3. Let the notation be as above. The following statements hold:
(i) There exists an integer P depending only on d such that foranyr > 0 and q > 1,

r
My (q. ) < Iu(g. ) < PMy(g, 31).
(ii) Forany q > 1, we have
7,(0) = Th(@),  Tu(q) = TH(q).

Proof. (a) Fixq > 1andr > 0. Let {B(xx, %)}key be an Z-packing of spt p. It is easy to see that for any k € Jand
x € B(xx, 5) we have
B(xk 1) C B(x, )
’ 2 - ’

and thus gl
u(B(xx, 5)) < u(B(x, )7 L.
Therefore,

S (ol D=3 [ u(a(on 1) oo

ked ked

B(xk, %)
<y U(Bx, 1)t du(x)
keJB(Xk’%)
- | B e
UkB(Xk,%)
< IL(q, 7).

By the arbitrariness of the %-packing {B(xg, %)} ke7, we derive that

My(q, %) < IL(q, ).

Now, we prove the second inequality. Let {B(xx, r)}xes be the largest possible collection of disjoint balls
of radius r with centers in spt u. Because of the compactness of spt u, we have that J is a finite set. Obviously,
{B(xk, 21)}keg is a 2r-covering of spt . As a matter of fact, if x belongs to spt i, then x must be within distance r
of one of the B(xy, r); otherwise, the ball of radius r centered at x can be added to form a larger collection of
disjoint balls. Our first goal is to show that for each k € J,

#{i € J: B(x;, 3r) N B(x, 37) # 0} < 9%
In other words, there are at most 99 balls of radius 3r intersecting with B(xx, 3r). In fact, if
B(xi, 3r) N B(xy, 31) # 0,

then
B(xi, r) <€ B(xi, 3r) € B(xy, 9r).

It follows from the disjointness of {B(x;, r)};cs that

. 9r\d
#{i € 7: B(x;, 3r) N B(xi, 3r) # 0} < (Tr) = 9d, “.3)
For simplicity, we write Bx = B(xx, 3r)and J = {1, ..., m},and we set B = {B1, ..., Bn}.

We next remark that there exists an integer P (< 99 + 1), depending only on d, such that there are families
B1, ..., Bp ¢ B satisfying that each B; is disjoint and

-~

B; = B.

~.
I
—_



1402 — S.Zhang, B. Gao and Y. Xiao, L7 spectra of in-homogeneous self-similar measures DE GRUYTER

Without loss of generality, we assume that #J > 99 ¢+ 1. Let B1,1 = By and then inductively choose By j = Bj
forj > 2, where k is the smallest integer with

j-1

Bin|JByi=0.

i=1
We continue this as long as possible getting a finite disjoint subfamily By = {B1,1, ..., B1,m,}. If B1 # B,
we define first B, 1 = Bi, where k is the smallest integer for which By ¢ B;. For j > 2, we define inductively
B, j = By with the smallest k such that By ¢ B, and

j-1
Bin| By, =0.
i=1
More generally, if Uf=1 B; + B, let Bsy1,1 = Bk, where k is the smallest integer for which By ¢ Ule Bj;. Again
forj > 2, we define inductively Bs,1,j = By with the smallest k such that B ¢ Ule B; and
j-1

Bin|JBsi,i = 0.
i=1

With this process, we find a disjoint subfamily B; = {By,1, .. . , Bi,m,}. By this construction, we can find sub-
families B1, ..., Bp of B such that Ule By =B.IfP>99+1, then forany Bp; € Bpand l € {1,...,99 + 1}
it follows from the construction of B; that Bp; N By,;, + @ for some i; € {1, ..., m;}. Thatis, Bp; intersects with
atleast 99 + 1 many balls in B, which contradicts (4.3). Hence P < 94 1 1 follows, as asserted .

Based on the above discussion, we derive

L(g, 1) = j U(B(x, )4 dp(x)
Ukes B(xk,21)

<Y | u@enmT aue
keI B(xy,2r)

<Y | B0 dueo
kejB(xk,Zr)
< ) u(By1
keJ
P
<) 2 HB
j=1 BreB;

< PMy(q, 31).
(b) This is now a direct consequence of (a). O
In the following, we assume that the COSC is satisfied and U is the open set used for the COSC.

Lemma 4.4. Let the setting and notation be as above. We have the following properties:

(i) Foranyi,je Z* withi # j, we have S;C n SjC = 0.

(ii) Foranyi e *, we have u(SiC) = ppi.

(iii) For any i € £*, we have u(S;U) = p;.

Proof. (a) Consideri,j € * withi # j. Without loss of generality, we assume that |j| > [i|. If i is a prefix of j, it
follows from the assumption of the COSC that for any i € £ we have

SiUnC=0, S;UcU.

Consequently,
CNS;'SU =0,
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thatis, SiC n S;U = @. Since C < U, we have S;C ¢ S;U. Evidently,
SiCn S;C=0.

Ifiis not a prefix of j, then S;U n S;U = 0. Moreover, by the fact that S;C ¢ SjU and SjC < S;U, we observe that
SiCn§;C=0.

(b) From (a), we have Si‘l(Si C)nC=0foranyi,j e £* withi # j. According to (2.2), it is easy to see that
foranyi € ¥,

WSiC)=p Y pjveS;H(Si0)

jexx
=ppv(C) +p ) pjve S (Si0)
jex*
j#
= PDi,

where the final equality follows from (a).
(c) Consideri € Z*. As stated in (a), a routine analysis gives that S;C n 9S;U = @ for any j € *. Moreover,
it holds that

(Usic)uosiveT.

jexx

Clearly,

1=p0) 2 ) uSiC) +pu(dsiv)
jexx

=Y Y ppj+u@Sil) (using (b))
k=0 ljl=k

=1+ u(oS;iU).
This infers that u(0S;U) = 0. Due to Lemma 4.1, we are led to the conclusion that
U(SiU) = u(SiU) + u(3SiU) = pi.
We have completed the proof. O

Set
Ko = min{dist(C, 9U), min dist(C, S;U)}. (4.4)
1<i<N

It is obvious that ko > 0. For any r € (0, ko), we set

Pi(r) = {ie X i< L < ri_}
Ko
and

Py(r) = {i ex > K—:)} (4.5)

Lemma 4.5. For any r € (0, o), we have the following properties:
(i) Foranyie P1(r)andj € P,(r), we have

dist(S;U, SjC) > r.
(ii) There exists a positive constant K1, depending on d and U, such that for any i € P(r),
#{j € P1(r) : dist(SiU, S;U) < r} < Kj.

(iii) Write A, = K’lﬁlxg(q). We have

N
r —
My(@.1) < Y pfMy(a. )+ p" My, ) + 1ar PO,
= j
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Proof. (a) Consideri € P1(r) and j € P,(r). Ifjis a prefix of i, i.e. i = (j, k), where k € X*, then
dist(S;C, SiU) = rj - dist(C, SkU) ~ (sincei = (j, k)
> rj - dist(C, Sk, U) (since SxU < Sk, U)
> K_’O Xo (by (4.4) and (4.5))
=r.
If i and j have different prefixes, then it follows from the COSC that
SiC < SU, SUNS;U = 0.
Therefore, we deduce that
dist(S;U, S;C) > dist(S;C, dS;U)
= rjdist(C, oU)
> K_’O ‘X0 (by (4.4) and (4.5))

=T.

(b) As U is an open set, we can assume further that U is contained in a ball of radius a, and U contains
a ball of radius b. Consider i € P1(r). It is easy to see that, for any j € P1(r), Siﬁ is contained in a ball of
radius ;’—g and it contains a ball of radius b’KLO’ Suppose there are K of j in P (r) such that

dist(SiU, SjU) < .

Then they are all contained in a ball of radius (i—o" + 1)r and each of them contains a ball of radius b'KLOi“’. Since
the COSC is satisfied, the pieces {SjU}jep, (r) are mutually disjoint. Summing up the volumes, we have

K(brKLOi“r)d < (i—: + 1)drd.

The lemma follows by choosing K; = (%)d.

(c) Let {B(xk, 1)}kes be an arbitrary r-packing of K¢. It is straightforward to see that

xi € Ke < ( U Sil_l) u( U sic) (4.6)

ieP(r) iePa(n)
for all k € J. Then
Y uB,m < Y Y uBn)T+ Y Y uBlx, ). (4.7)
keJ i€eP,(r) ked i€ePi(r) keJ
xr€SiC Xkesiﬁ
Consider the first summation of (4.7). Clearly,
N
Y Y uBaLmI<Y Y Y uBx, )T+ Y uBx, ). (4.8)
iePy(r) keJ j=1ieP,(r) keI ked
xx€S;C ili=j xx€SiC xxeC

Ifi € P,(r) withi|;=j € X, then

dist(S;C, 0S;U) = dist(S;C, 0SiU) (using S;C < S;U < S;U)
=rj-dist(C, oU)

> KL - Ko (using (4.4) and (4.5))
0

=T.
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Evidently, it can easily be seen that for any xj € S;C,
B(xy, 1) < S;U.

This implies that

N q
H(BOa, 1) = (), pie 7 (B, 1) + pY(BOxi, 1) )

i=1
= p}ue S; (B, 1)

~pu(B(s; e 7))

We next consider xj € C. Recall that

0 <1< ko < min dist(C, S;U).
1<j<N

Therefore, for all j € Z, we get
B(xx, 1) N S;U = 0.

Consequently,

N q

H(BOxk )7 = (Y. pibt o S (B, 1) + PV(Bxk, 1)) = pIV(Blxk, 1),

i=1

Substituting (4.9) and (4.10) into (4.8), we derive
N
Y Y uBen <y Y Y piu(B(sx L)) + Y pvBG 1)
]

ieP,(r) keJ j=1ieP,(r) keI keJ
xx€SiC il1=j xx€SiC xxeC

=§p§’ Y > H(B(S,-‘1Xk,rij))q+p" Y v(BOx, 1)’

j=1 ieP,(r) kel ked
i|1:j xxeSiC xxeC

It is easy to check that forany j € %,

{B(Sj’lxk, rL) : xx € SiC, k € J, wherei € P,(r) with i|1=j}
j

isan rll_-packing of K¢, and
{B(xk, 1) : xx € C, k € 3}

is an r-packing of C. Clearly,
N r
Y Y uBon? <Y piMy(g, ) +pIMug, D).

ieP,(r) keJ j=1 Tj
xx€S;C

We next estimate u(B(xx, r)) for xi € SiU, i€ P1(r). By (4.6), we derive that

U(B(xg, 1)) < Z UB(xg, r) N S;C) + Z y(B(xk,r)nSiﬁ).
jeP,(r) jePi(n)

According to (a), for any j € P, (r), we have
dist(xx, SjC) = dist(SiU, SjC) > r,

which infers that
B(xk, r)n §;C = 0.

(4.9)

(4.10)

(4.11)
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Hence, we obtain
Y uB(, 1) nSiC) =0.
jePa(r)

Moreover, it is straightforward to see that u(B(xx, r) n S;U) > 0 only if dist(SiU, S;U) < r. It follows that

HBXLN)S Y uB, 1) N S0). (4.12)
jePa(n)
dist(S; U, S;U)<r

Owing to the above argument, we are now in a position to consider the second summation of (4.7). Using
inequality (4.12), we get

_\4
Y Y uBaen’s Y Y (Y uBxennsD)
iePy(r) kel iePy(r) kel jePi(r)
xx€SiU xk€SiU  dist(S;U,S;U)<r

_\4
Y(Y Y uBxenosD)
i€ePq(r) ked jePi(r)
x€SiU dist(S;U,S;U)<r

—\4
y ¥ y(B(xk,r)nSiU)) . (4.13)
icP(r) jePi(r) keJ
dist(S; U, S;U)<r xk€S;iU

IN

Il
™M

By means of the disjointness of {B(xx, r)}key, it turns out that

Y y(B(xk,r)nsiﬁ)z,u( U B(xk,r)nsiﬁ)

keJ keJ
XkESiﬁ Xkésiﬁ
< u(S;0)
=pj (using Lemma 4.4). (4.14)

Furthermore, combining (4.13) and (4.14), we have

q
Y ¥ ueeanis Y (Y )
iePi(r) kel _ ieP(r) jeP1(n)
xc€SiU dist(S;U,S;U)<r

<K Y D pi" (using (b))
iePi(n)  jePi(n)
dist(SiU,S;U)<r

_ x4 q
=K Y > P
jePi(n  iePa(n)

dist(S;U,S;U)<r

1
<K S
jeP1(r)

< N P@. (4.15)
If we plug (4.11) and (4.15) back into (4.7), then we derive
y r
> uBOx )? < Y pIMu(q, - ) + PIMu(g, 1) + Aar PO,
4 r;
ked j=1 ]
On account of the arbitrariness of {B(xk, r)}keg, it turns that
y r
My(q,) < ) piMy(a, r—]) +pIMy(g, 1)+ M r @
j=1

as desired. O
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Proof of Theorem 2.12. Fix q > 1. We first show that
Tu(q) < max{7y(q), B(q)}.
Let t > max{T,(q), B(q)}. Then there exists k1 € (0, 1) such that for any r € (0, k1),
My(q, 1) <1t (4.16)

Write xk = min{xg, x1} and consider r € (0, x). As demonstrated in Lemma 4.5, we have

N
r _

My(q, 1) < Zp]gMy(q, F) +pIM,(q, 1)+ A1 Blg)
j

—.
_

<

=

p]‘.IMy(q, r_r]) +A,r 0 (using (4.16)), (4.17)
1

]

where, for the ease of notation, we set 1, = p4 + 1. Choose a constant Cy large enough such that

I(q, 2ro) A }

Co > max{ .
. _ —t ’
min{(rmint0) 15’} 1 - Y%, pi'rt

It is easy to see that for any r € [rmin70, 7o,

My(q,r) <I,(q,2r) (using Lemma 4.3)
< Iu(q, 2ro)

= Co min{(rmin70) ™", ry'}

< C()r_t.

Assume that
My(g, 1) < Cor™* (4.18)

holds when r € [, 'minT0, To] for some n € IN. Now, we show that (4.18) holds for all r € [k rminro, rol.
Apparently, we only need to consider r € [r{’n;}( Tmin70, 'max min70], Which infers that ,—’} € [rhaxminT0, o] for
j € . We find that

N _t
My(q, 1) < Zp]‘?co(;) +Ar ™t (using (4.17) and (4.18))
j=1 j

N
= (Co Y piri+ Az)r‘t
j=1

A
< Cort (using Co > —)
S

Therefore, the inductive hypothesis gives that (4.18) holds for all r € [0, ro]. Hence, we deduce 7,(q) < t.
Letting t — max{7,(q), f(q)} vields that

Tu(q) < max{T,(q), B(q)}.
Thanks to Theorem 2.7, we are led to the result that
?y(q) = {?V(Q), ﬁ(Q)}

forallg > 1.
It remains to show that

7,(q) < max{B(q), 7,(q), 7,(q) + B(q) - (1 - q) dims v}.
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Fix € > 0. It follows from the definition of 7,(g) in (1.2) that there exists a sequence {r;}m \ O such that

L,(q, ) < T 9" (4.19)
According to Lemma 3.3, there exists O < ry < 1 such that for any 0 < r < ro we have
Y pin @ <r. (4.20)

ielL(r)

Without loss of generality, we can assume that O < r, < min{rg, xo} and

Tmin"'m
IOg diam K¢ —€
— <1y
108 rmax

Thanks to Lemma 4.5, we have

N
r —
My(q, rm) < ZP?MM(‘L r_m) +pIMy(q, Tm) + Alrmﬂ(q)-
J

j=1
Recall that
. « r
Ii(rm) = {1 eX':rn< —diarZKC < ri,}
. 'm
Io(rm)=4ieXZ :ri> —-—1,
2( m) { i diam KC}
. 'm
r = i .
3(rm) {1 ¢ "> Gam C}
It is apparent to see that for any j € 'y (1),
ljl < —log aian <r
10g rmax '

An easy induction gives that

r r _
My(g,rm) <) piny(q,r_’fl)erq y p?Mv(q,r—rfl)erm(ﬁ(q)“)-
j€T1(rm) J jel(rm) J

For any j € T'1(ry), it is easy to check that ’r—'f > diam K¢, and in such a case one ball of radius rr—']" with center
in K¢ can cover K. It follows that

r - .
Z p;IMy(q, —m) = Z p;] < Craxtn?@  (using Lemma 3.2).
jel'1(rm) T jeritm)

A similar argument also gives that for anyj € I'>(rn) \ I's(rm),
Tm\ _
Mv(q, r_,) =1.
Evidently,

r
pim(a )= ¥ o
j€l2 (rm)\T'3(rm) ) j€l2 (rm)\T'3(rm)

v 5
smax{( ) (me) 1 2 )

Jel2(rm)\I3(rm)
< Cmaxr;nﬁ(q) . ( z pgzrf(q))
jeTa(rm)

< Cmaxr# @re) (using (4.20)).

Here we recall that diam K p@
Cmax = max{(diam Ko@), (diam /@, (S22 )70

T'min
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Moreover, by the definition of dim4 v in (2.4), there exists C; > 0 such that for any j € I'5(ry,),

V(B(x, 7)) 2 \dimy vee
_ — . 21
W =) (4-21)
Thus, for any j € I's(rp,), we have
Mv(q, ) < Iv<q, '") (using Lemma 4.3)
T Tj
2rm\\4-1
= JV(B(X, r_,)) dv(x)
c
(di )(g-1)
Cq ! rZ) v I,(q,rm) (using (4.21))
j
(di )(g-1) -
< Cq 1( 2) marend rm(lv(q)%) (using 4.19).
Tj
Consequently,
g-1, (r (q)+€) gq( 2 \(dims v+e)(g-1)
> pim(a )< (5 p(]) )
jeTs(rm) jers(rm) )
< Cyry -(z,(@+e) Z p] (dlmA v+e)(1- q))
jels(rm)
where
C, = 2(dimA v+e)(q—1)C611—1.
Based on the above argument, we conclude that
M (q, rm) < Cmaxr ~-B(q) pq(cmaxr;n(ﬁ(q)%) + Cer_rl(IV(q)+€) z piqugdimA V+€)(1*Q)> +A1r;1(ﬁ(q)+€).
iel";(rm)
This infers that
7,(q) <max{f(q) + €, 7,(q) + €, 1,(9) + €+ B(q) - (1 - g)(dima v + €)}.
Letting € — 0 leads to the final result. O
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